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Chapter 5 

Compression Member 

 

 

 

 

 

 

 

 

 

 

5.1 Introduction 

The selection of the column is often a very critical part of the design of structure 

because the failure of the column usually has catastrophic effects. If a column is 

long compared to its width, it may fail by buckling (bending and deflection 

laterally). The buckling may be either elastic or inelastic depends upon the 

slenderness of the column. 

 

5.2 Critical load and Euler Theory 

 

In this section we discuss a theory of a straight column that is simply supported 

at either side. This theory was first developed by Leonard Euler and is named 

after him. The assumptions for this theory are: 

a) The column is perfectly straight; 

b) The cross section of the column is uniform; 

c) The column material is homogeneous; 

d) The column behave elastically; 

e) The compression force acted on the centroid of the section. 

 

This chapter starts with the behaviour of columns, general discussion of buckling, 
and determination of the axial load needed to buckle. Followed by the assumption 
of Euler’s Theory and the calculation with the different types of support in the 
column. At the end of the chapter, Secant formula will be discussed when the 
axial load acted at the offset from centroid.  

After successfully completing this chapter you should be able to: 
 

 Determine the type of failure in compression member 

 Determine the shape of buckling in compression member 

 Analyse the compression member using Euler’s theory and Secant formula 
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Figure 5.1 shows a simply supported column that is axially loaded with force P. 

Let the bending deflection at any location x be given by y as in Figure 5.2. By 

balancing the moment at Point A, we obtain  

 

M + Py = 0 

The differential equation for moment curvature relationship is given by 
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The solution to the differential equation is: 

  y = A kos λx + B sin λx 

 

With a boundary condition x = 0 y = 0 we obtain A = 0, thus y = B sin λx 

 

And with x = L, y = 0; we obtain B sin λL = 0 

 

If B = 0, than we obtain a trivial solution, For a nontrivial solution, the sun function 

mest equal to zero 

  sin λL = 0 →is called buckling equation 

  λL = nπ ( n = 1,2,..) 

Therefore 

  λ2L2 = n2π2 
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The critical buckling load is 
2

22

L

EI
nPcr       (5.1) 

Pcr the critical buckling load is also caller Euler load. Buckling will occur about the 

axis that has minimum area of moment of inertia. 

 

The importance of each buckled mode shape is shown in Figure 5.3 as n is 

increased; the deflection curve has more and more inflection points.  
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Figure 5.3: The value of n defines the buckling mode shape. 

 

For case 1 where n = 1, the value of L that should be used is depends on the 

support condition at both ends of the column. So the equation 5.1 can be written 

as: 
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Where 

i) If both ends are pinned; Le = L 

ii) If one end fixed, other end free; Le = 2L 

iii) If both end are fixed; Le = L/2 

iv) If one end fixed, other end pinned; Le = 0.7L 
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Figure 5.3: Effect of support condition 

 

 

EXAMPLE 1 

A 2 m long pin ended column of square cross section is to be made of wood. 

Assuming E = 13 GPa, σall = 12 MPa and using a factor of safety of 2.5 in 

computing Euler’s critical load for buckling. Determine the size of cross section if 

the column is to safely support (a) 100 kN load and (b) 200 kN load. 

 

Solution 

(a) 100 kN load 

Pcr = 2.5 (100) = 250 kN, L = 2 m, E = 13 GPa. 

In Euler’s Equation 5.2 and solve for I, we have 

 46

92

23

2

2

10794.7
)1013(

)2)(10250(
mx

x

x

E

LP
I cr 


 



 129 

For a square of side a, we have I = a4/12, we write 

6
4

10794.7
12

 x
a

 a = 98.3 mm 100 mm 

We check value of normal stress in the column: 

MPa
A

P
10

1.0

100
2
  

Since σ is smaller than the allowable stress, a 100 x 100 mm cross 

section is acceptable. 

 

(b) For the 200 kN load 

Solving again Equation 5.2 for I, but making now Pcr = 2.5(200) = 500 kN, 

we have I = 15.588 x 10-6 m4. 

6
4

10588.15
12

 x
a

 a = 116.95 mm 

The value of normal stress is 

MPa
A

P
62.14

11695.0

200
2
  

 

 Since this value is larger than the allowable stress, the dimension 

obtained is not acceptable and we must select the cross section on the basis of 

its resistance to compression. We write 

 231067.16
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200
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P
A
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

 

 a2 = 16.67 x 10-3 m2  a = 129.1 mm 

A 130 x 130 mm cross section is acceptable. 
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EXAMPLE 2 
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    Figure 5.4 

A column with 6 meters height is connected to the beam as in Figure 5.4. With 

the connection between beam and column is pinned, Determine the critical 

buckling load of the column. E = 5000 MPa 

 

Solution 

Determine moment of inertia, I 

 Ixx = 
  8
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Deremine critical buckling load 
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Therefore the critical buckling load is 771 kN  
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5.3 Limitation of Euler Theory 

Since Pcr is proportional to I, the column will buckle in the direction corresponding 

to the minimum value of I. 

 

A column can either fail due to the material yielding, or because the column 

buckles, it is of interest to the engineer to determine when this point of transition 

occurs. Because of the large deflection caused by buckling, the least moment of 

inertia I can be expressed as 2ArI   

where: A is the cross sectional area and r is the radius of gyration of the 

cross sectional area, i.e. .  

Note that the smallest radius of gyration of the column, i.e. the least moment of 

inertia I should be taken in order to find the critical stress.   

 

Dividing the buckling equation by A, gives:  

   

 

where:  

cr is the compressive stress in the column and must not exceed the 

yield stress y  of the material, i.e. cr < y,  

L / r is called the slenderness ratio, it is a measure of the column's 

flexibility. 

 

 

5.4 Secant Formula for Column 

 

When a column with simply supported is compressed by an eccentricity applied 

axial as in Figure 5.4, the maximum compressive stress in the column is: 
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The first term on the right-hand side of this equation represents the effect of 

direct compression and the second term represents the effect of bending of the 

column. Recalling that the section modulus S = I/c, where c is the distance from 

the neutral axis to the extreme fiber on the concave side of the column and also 

introducing the notation AIr /   for the radius of gyration, we can express 

equation 5.3 in the form  
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Figure 5.4: Column with eccentrically applied axial force 
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Next replacing k by EIP / , we obtain 
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This equation is called the secant formula for an eccentrically loaded column. It 

gives the maximum stress in the column as a function of the average 

compressive stress P/A, the eccentricity ratio ec/r2, and the slenderness ratio L/r.   
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EXAMPLE 3 

A steel column of 254 x 254 x 107 kg UC section (Fig. 5.5a) with pinned ends is 

8 m long. It carries a centrally applied load P1 = 980 kN and an eccentrically 

applied load P2 = 140 kN on axis 2-2 at a distance of 400 mm from axis 1-1 (Fig 

5.5b).  

a) Using a secant formula, calculate the maximum compressive stress in the 

column; 

1

1

22

400 mm

P1 P2

e

P

(a)

(b) (c)
 

 

Solution 

a) The two loads P1 and P2 acting as shown in Fig. 5.5(b) are statically 

equivalent to a single load P = 1120 kN acting with an eccentricity e = 50 

mm (see Fig. 5.5(c). Using the table of properties, we find 

2
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 Substituiting into equation 5.4 using E = 200 kN/mm2, we get 

  6.138max   N/mm2. 
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5.5 Perry Robertson Formula 

 

Several different formulae have been devised that give a more realistic estimate 
of buckling loads than the Euler equation. 
 
The formula usually used for structural steelwork is the Perry-Robertson formula. 
Formulation is based on the assumption that the strut is initially bent with a 
maximum offset of c0 
 

 
 
Notes: Origin fixed at strut mid length. 
v is increase in deflection due to P. 
 

Perry formula 
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Based on test on circular mild steel column, Robertson proposed that a value of 

k

le003.0  could be used for mild steel columns. If a value for initial out of 

straightness c0 is known, this value should be used to calculate
2

0

k
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  


