

U

Semester 2 2017/2018

DESIGN OF REINFORCED CONCRETE PILE CAP

Dr. Zainorizuan Mohd Jaini Faculty of Civil and Environmental Engneering Universiti Tun Hussein Onn Malaysia 86400 Parit Raja, Batu Pahat, Johor, Malaysia

Introduction

www.uthm.edu.my

Introduction

www.uthm.edu.my

With Wisdom, We Explore

Nagoya Ring Road No. 2

www.uthm.edu.my

- Piles are used where the soil conditions are poor and it is uneconomical, or not possible to provide adequate spread foundations.
- The piles must extend down to firm soil so that the load is carried by either end bearing, friction along the length of pile, or a combination of both end bearing and friction.

www.uthm.edu.my

www.uthm.edu.my

www.uthm.edu.my

With Wisdom, We Explore

Information from soils survey will provide a guide to the lengths of pile required and the probable safe load capacity of the piles.

Pile Nominal F Size A	Pile Length Concret L Grade		Maximum Axial Working	Maximum Axial Working	Maximum Axial Working	JKR Recommended	No: Dir	ninal nensi	Pile ons	Main		(Links [Details to	Links Table below or of Equivalent)			
Size A	L	Grade	Load	Axial Working	18.5	1990	32	Reinforcement	F	Pile Head Transitio				on Pile Body			
, (mm x mm)	(m)	(N/mm²)	(kN)	(kN)	A (mm)	A B C	(NołDia)	Wire Details	P1 (mm)	X (mm)	P2 (mm)	Y (mm)	Wire Details	P3 (mm)			
150 X 150	3,6	45	332	200	153	147	150	4 T 10	R6.0	40	450	40 - 75	450	R6.0	75		
175 X 175	3,6	45	455	300	178	172	175	4 T 12	R6.0	40	525	40 - 75	525	R6.0	75		
200 X 200	3,6	45	570	350	203	197	200	4 T 12	2R6.0	65	600	65 - 85	600	R6.0	85		
250 X 250	3,6,9,12	45	910	500	253	247	250	4T16	2R6.0	60	750	60 - 75	750	R6.0	75		
300 X 300	3,6,9,12	45	1320	800	303	297	300	4 T 20	2 R6 .0	55	900	55 - 70	900	R6.0	70		
350 X 350	3,6,9,12	45	1730	1150	353	347	350	4 T 20	2R6.5	55	1050	55 - 65	1050	R6.5	65		
400 X 400	3,6,9,12	45	2310	1450	403	397	400	4 T 25	2R6.5	50	1200	50 - 60	1200	R6.5	60		

□ Standard size of in-situ pile: 600mm – 1500mm.

Precast driven pile: Micropile Ø < 150mm, Small 150mm < Ø < 550mm, Large Ø > 550mm.

Type of Pile Cap

www.uthm.edu.my

Type of Pile Cap

www.uthm.edu.my

With Wisdom, We Explore

9

Procedure of Design

www.uthm.edu.my

- General procedure of pile cap design:
 - 1. Selection of pile type
 - 2. Determination of pile capacity
 - 3. Determination of pile number and spacing
 - 4. Design of pile cap
 - a) Size and thickness: diameter pile <550mm or >550mm
 - b) Main reinforcement using
 - Truss theory >>> subjected to axial load only
 - Beam theory >>> subjected to axial load and moment
 - c) Design for shear: punching shear is not necessary if $S \le 3M_p$ and shear force < $V_{Rd, max}$
 - 5. Detailing
 - a) Diameter bar not less than 12mm
 - b) Spacing not greater than 250mm

Procedure of Design

Nicdom Ma

Evoloro

Determine pile number and spacing	N = axial load from column
	W = weight of pile cap
$n = \frac{N + W}{M}$	P _{q,c} = service bearing capacity
P_{ac}	n = number of piles
9,0	M = moment
Size and thickness	x = distance from pile to centroid
$\frac{1}{100} = \frac{1}{100} = \frac{1}$	I = moment of inertia, $4S^2$
$ \phi p \le 550 \text{ mm} >>> n = 2\phi p + 10$	$\mathcal{O} \mathbf{\phi}_{p} = \text{diameter of pile}$
	h = depth of pile cap

if $\emptyset p > 550mm >>> h = 1/3(8\emptyset p - 600)$

Maximum service load per pile

F
$$F_a = \frac{N + W}{n}$$
; **F** + M $F_a = \frac{N + W}{n} \pm \frac{Mx_i}{l_y}$

Procedure of Design

www.uthm.edu.my

With Wisdom, We Explore

- Design of shear
 - Shear capacity at the critical section, $20\% Ø_p$ or $Ø_p/5$ inside the face of pile.

For $S \le 3\mathscr{Q}_p$ Shear resistance on vertical plane; a_v Shear enhancement, $V_c = v_c(2d/a_v)$

When S > $3 \ensuremath{ \ensuremath{ \mathcal{ P} }}\xspace_p$, punching shear must be checked

Shear force at column surface; $V_{Rd,max} = 0.5u_o d_a v_1 (f_{ck}/1.5)$

$$V_{Rd,max} > V_{Ed,max}$$

Pile Cap Design

www.uthm.edu.my

With Wisdom, We Explore

Example 4.3:

Pile cap under axial load (Truss Theory)

www.uthm.edu.my

With Wisdom, We Explore

A pile foundation is required to support permanent axial load of 3200kN and variable load of 2500kN from a 500x500 mm rectangular reinforced concrete column.

The pile used is 500mm diameter reinforced concrete bored pile with service load capacity of 1800kN.

Determine the suitable number of pile and size of pile cap. Design the pile cap using grade C35/45 concrete, grade 500 steel reinforcement and concrete cover 75mm.

www.uthm.edu.my

SPECIFICATIO	<u>DN</u>							
N	Axial L	oad, N	$G_k =$	3500	kN	$Q_k =$	2500	kN
	Chac. S	Strength	of concr	ete, $f_{\rm ck}$	=	35	N/mm ²	
	Chac. S	Strength	of steel,	Fvk	=	500	N/mm ²	
	Assum	e bar size	e,	$\phi_{\rm bar}$	=	25	mm 📑	
] Nomina	al concre	te cover	, с	=	75	mm,	
	Colum	n size		—	500 x	500	mm	
	Pile :	Prestress	sed Spur	n pile	=	500	mm dia	
		Service	load		=	1800	kN	
SIZE OF PILE	CAP		and the second					
Service load =	3500 + 2500) =	6000	kN				
Assume selfweig	ht of pilecap,	say $W =$	200	kN				747
No. of pile require	ed = (N + N)	V) / pile o	capacity					
= (6000 +	200) / 1800	= 3.4	Use :	4				
Pile spacing = h	$\epsilon \phi_n = 3$	φ _p						
Width = $(k + 1)$	$(x \phi_n + 300)$)						
	(3+1)(500)	+ 300	= -	2300	mm			
Length = $(k + 1)$	$) x \phi_{2} + 300$)						
	(3+1)(500)	+ 300	=	2300	mm			
Depth. $h = 2\phi_{a}$	+100 = 2	2 (500)	+100 =	1100	mm		Ok	
$\frac{2 \operatorname{cp}_{H}}{\operatorname{Try}\operatorname{size}: B \times H}$	xh = 2.3	x 2.3	x 1.1	m				
Selfweight =	25 x (2.3	x 2.3 x	1.1) =	145	kN			

www.uthm.edu.my

www.uthm.edu.my

www.uthm.edu.my

	MAIN	REINF	ORCE	MENT						enterna Peyr	
	Effectiv	e depth	d = h	- c - 1.	5(¢ _{bar})						
		=	1100	- 75 -	(1.5 x	25) =	988	mm			
	Ultimate	e load,	N = 1.3	$5G_{k} + 1$	$.5Q_k$						
	=	1.35	(3500)	+ 1.5	(2500)	=	8475	kN			
	From tru										
	Tension	force,	T = N	L/8d =	8475	x 1.5	/ (8 x	0.988)			
			=	1609	kN						
	Area of	reinfor	cement,	$A_{\rm s} = '$	T / 0.87f _{yk}						
		=	1609	x 10 ³ /	0.87 (500) =	3699	mm ²			n opticionariani o
	For the	whole v	vidth of	pile cap,							
		$A_s =$	2 x	3699	=	7399	mm ²		Use:	16	H25
										(7855	mm ²)
9.2.1.1	Minimur	n and n	naximum	n reinfor	cement	area,					
	$A_{\rm s,min} =$	$A_{\rm s,min} = 0.26(f_{\rm ctm}/f_{\rm yk}) bd =$				(3.21 /	500) x	bd			
	=	0.0017	bd =	0.0017	x2300	x 988	=3791	mm ²			
	$A_{s,max} =$	0.04A _c	=	0.04 x	2300 x	1100 =	101200	mm ²			
						VALUE OF CONTRACT OF CONTRACT.				and the second	

www.uthm.edu.my

	SHEAR		- 1								
	(i). Vertic	al she	ar - at o	♦/5 secti	ion insid	e pile					
	Load per	pile =	8475	/4 =	2119	kN					
3.11.4.3	2 pile outs	ide th	e critica	l section	•						
	Shear for	ce, V_1	Ed	= 2	(2119)	=	4238	kN			
	Pile spacing <		3¢ _{pile}	Conside	r shear ei	nhancem					
	Reduced	shear	force,		on the w	hole wid	th of the	section			
	V _{Ed}	=	4238 x	(a _v /2d) =						ļ
		=	4238 x	350/	(988	x 2) =	751	kN			
										ļ	
6.2.2	Design sh						ļ				
	$V_{\rm Rd,c} = [0.12 k (100 \mu)]$			$(f_{\rm ck})^{1/3}$] bd				1		
	k = 1	1 + (20)	$(0/d)^{1/2}$	≤ 2.0							
	= 1-	+(200	/ 988)	1/2	= 1.45	≤ 2.0	Use :	1.45			
	$\rho_1 = A$	l _{sl} /bd	≤ 0.0	2					-		
	= 7	855 /	2300 x	988 =	0.008	≤ 0.02					
	$V_{\rm Rd,c} = 0$).12 x	1.45 x	(100 x	0.0080	x 35) ¹⁷	x 2300	x 988		ļ	
	=	1198	$x 10^{3} N$	=	1198	kN			n Andrea Andrea Andrea Andrea Andrea		-
	$V_{\min} = [0.035k^{3/2}f_{ck}^{1/2}]$ = 0.035 x 1.45 ^{3/2} x = 821 x 10 ³ N	$\frac{1}{2}$] bd									
		x 35	x 2300	x 988			-				
		$\mathbf{x} \ 10^3 \mathbf{N}$	=	821.2	kN						
	So, $V_{\rm R}$	kd,c =	1198	kN	>	V _{Ed}				Ok !	_

www.uthm.edu.my

6.4	(ii). P	unching	ce							
		Pile spa	icing	<	3¢ _{pile}					
				No pur	nching sl	near che	ck is ne	cessary	Ok !	
	(iii). N	1aximun	n Punchi	ng Shea	r at colu	mn peri	meter.			
	Maxim	um shea	r resista	nce,						
	V _{Rd,max}	=	0.5ud	$0.5ud [0.6(1 - f_{ck}/25)]$						
		0.5(4 x	500) x	988 [0.6 (1	- 35/	250)] (35/1.5)		
		11890	kN	>	$V_{\rm Ed,max}$	= 8475	kN		Ok !	
	CRAC	KING								
7.3.3	h =	1100	mm	> 200 n	nm				Need spesific n	neasure!
	Assum	e steel s								
	=	0.55	(fyk/1.1	5)(A s.req	(A s. prov)					
	=	0.55	(500 /	1.15)	(7399/	7855)				
		225	N/mm ²							
Table 7.3N	For des	ign crac	k width	= 0.3 m	m					
	Max. a	llowable	bar spa	cing =	200	mm				
	Max. bar spacing = [2300			2300 -	2(75)	- 25]/	15			
			=	142	mm	>	200	mm	Ok !	
		14 L 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								

www.uthm.edu.my

Pile Cap Design

www.uthm.edu.my

With Wisdom, We Explore

Example 4.4:

Pile cap under axial + moment (Beam Theory)

22

With Wisdom, We Explore

A pile foundation is required to support an ultimate axial load of 4200kN and an ultimate bending moment of 75kNm from a 400x400 mm rectangular reinforced concrete column.

The pile used is 300x300mm precast RC piles with service load capacity of 600kN.

Determine the suitable number of pile and size of pile cap. Design the pile cap using grade C35/45 concrete, grade 500 steel reinforcement and concrete cover 75mm.

www.uthm.edu.my

	SPECIFICATION							
	N	Axial L	oad, N _u	ltimate		=	4200	kN
_		Momen	nt, M _{ult}	imate		=	75	kNm
	Î. Î.	Chac. S	Strength	of conci	rete, f_{ck}	=	35	N/mm ²
	M	Chac. S	Strength	of steel,	$f_{\rm vk}$	=	500	N/mm ²
		Cover,	<i>c</i> =	75	mm	$\phi_{\text{bar}} =$	16	mm
		Column	size =		=	400	x 400	mm
		Pile :		Precast	RC pile	300	x 300	mm
		******************	er fillen en e	Work	ing load	=	600	kN
		Safety	factor			=	1.40	
	SIZE OF PILE CAP					-		
	Service load = (4200	/1.40)	=	3000	kN		an sala sa	
	Assume selfweight of	oilecap, s	ay $W =$	200	kN	1	and under A grown control	
	No. of pile required =	(N + W) / pile d	capacity	8 - 1990 - 1990 - 1990 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 19			
and the second and the second as a second	= (3000	+ 200)	/ 600	= 5.3	Use :	6		
ALC: N. S. C. LEWIS CO., Name	Pile spacing = $k \phi_n$	= 3	φ,		hannan en en an anna		er mutte o escolar a salo a	
1999 - C.	Width, $B = (k + 1)$	$\langle \phi_{\rm p} +$	300					
a da antigana a dan sa da ang din kawangan	= (3+1)	(300)+	300	=	1500	mm		
1. 1. THE CONTRACTOR OF THE THE P.	Length, $L = (2k + 1)$	$) \times \phi_{n} +$	- 300				1999-1997-1997-1997-1997-1997	
	= [2(3)+1]	(300)+	300	=	2400	mm		
	Depth, $h = 2\phi_n +$	400 =	2(300)	+400 =	1000	mm	a i dana da fi da fina da se	(
	Selfweight = $25(1.5)$	x 2.4 x	1.0)	=	90	kN		

www.uthm.edu.my

www.uthm.edu.my

	Analysis	
	Ultimate load per pile, $F = P/n + Mx/I$	
	= (4200 / 6) + 75.0 (0.90) / 3.24	
	= 700.0 + 20.8	
	= 721 kN	
	Maximum moment at column face,	
	$M_{xx} = 2 \{ 721 x (0.90 - 0.20) \} = 1009 \text{ kNm}$	
	$M_{yy} = 3 \{ 700 \text{ x} (0.45 - 0.20) \} = 525 \text{ kNm}$	
6.1	MAIN REINFORCEMENT	
	Effective depth,	
	$d_x = h - C_{\text{nom}} - 0.5\phi_{\text{bar}} = 1000 - 75 - 0.5 \times 16 = 917 \text{ mm}$	
	$d_y = h - C_{\text{nom}} - 1.5\phi_{\text{bar}} \# \# \# \# \# \# = 75 - 1.5 \times 16 = 901 \text{ mm}$	
	Longitudinal bar	
	Bending Moment, M – 1009 kNm	
	$K = M / bd^2 f_{ck}$	
	$= 1009 \times 10^{6} / (1500 \times 917^{2} \times 35)$	Set bed
	$=$ 0.023 $<$ $K_{\text{bal}} =$ 0.167	
	Compression reinforcement is not required	
	$z = d [0.5 + \sqrt{0.25 - K/1.134}] = 0.98 d \le 0.95d$	
	$A_{\rm s} = M / 0.87 f_{\rm yk} z$	
	$= 1009 \times 10^{6} / (0.87 \times 500 \times 0.95 \times 917)$	Use: 14 H16
	$= 2663 \text{ mm}^2/\text{m}$	(2815 mm ²)

www.uthm.edu.my

9.2.1.1	Minimur	n and n	naximum	n reinfor							
	$A_{s,min} =$	$0.26(f_{ct})$	$m/f_{yk}) b$	d =	0.26 x	(3.21 /	500) x	bd			
	=	0.0017	bd =	0.0017	x1500	x 917	=2296	mm ²			
	$A_{\rm s,max} =$	0.04A _c	=	0.04 x	1500 x	1000 =	60000	mm ²			
	Transv	erse ba	ır								
	Bending	Mome	nt, M	=	525	kNm					
	<i>K</i> =	M / b	$d^2 f_{\rm ck}$			12.2.15					
-		525	x 10 ⁶ /	(2400	x 901 ²	x 35)					
		0.008	<	$K_{\rm bal} =$	0.167		-				-
	Compression reinforcement is not required										
	z =	d [0.5	$+\sqrt{0.2}$	5 - K/2	1.134)]	= 0.99	$d \leq$	0.95d			-
	$A_{\rm s} =$	M / 0.8	$7f_{yk}z$								
	=	525	x 10 ⁶ /	(0.87 x	500 x	0.95 x	901)		Use:	16	H16
	: ···· =	1410	mm²/m							(3217	mm ²)
9.2.1.1	Minimu	m and n	naximun	n reinfor	cement	area,					
-	$A_{\rm s,min} =$	0.26 x	(3.21 /	500) x	bd						
	=	0.0017	bd =	0.0017	x2400	x 901	=3609	mm ²			
	$A_{\rm s,max} =$	0.04A _c	=	0.04 x	2400 x	1000 =	96000	mm ²	****		
					upur.	100000		-			

www.uthm.edu.my

	SHEAR								
	(i). Vertical sh	ear - at	¢/5 secti	ion inside	e pile				
3.11.4.3	2 pile outside t	he critica	l section	•					
An A	Shear force,	V _{Ed}	= 2	(721)	=	1442	kN		
	Pile spacing	<	3¢ _{pile}						
	Consider shea	r enhance	ement ov	ver the v	vhole wi	dth of pi	ile cap		
	Reduced shea	r force,							,
	$V_{\rm Ed} =$	1442 x	$(a_v/2a)$!)			-		
	=	1442 x	610 /	(917	x 2) =	480	kN		
6.2.2	Design shear	resistance	з,						
1999, 999 999 999 1999 1999 1999 1999 1	$V_{\rm Rd,c} = [0.1]$	2 k (100)	$(f_{\rm ck})^{1/3}$] bd					
	k = 1 + (200/d) ^{1/2}	≤ 2.0						
	= 1+(20	0 / 917)	1/2	= 1.47	≤ 2.0				
	$\rho_1 = A_{\rm sl}/b$	$d \leq 0.0$	2						
	= 2815	/ 1500 x	917 =	0.0031	\leq 0.02				
	$V_{\rm Rd,c} = 0.12$	x 1.47 x	(100 x	0.0031	x 35) 1/3	x 1500	x 917		
	= 53	$4 \times 10^{3} N$	1 =	534	kN				1147), Sevenaria
ann a stàite ann an ann an ann an ann an ann an ann an a	$V_{\rm min} = [0.03]$	$35k^{3/2}f_{\rm ck}^{1}$	$^{/2}$] bd						
	= 0.03	5 x 1.47	$x 35^{1/2}$	x 1500	x 917				
· · · · · · · · · · · · · · · · · · ·	= 50	$6 \times 10^{3} N$	1 =	506	kN				
				£					
	So, V _{Rd,c}	= 534	kN	>	V _{Ed}			Ok !	

www.uthm.edu.my

6.4	(ii). Punching Shear : Critical at perimeter 2.0d									****
	from	column fa	ace.							······································
	Pile sp	acing	<	3¢ _{pile}						
			No pu	nching s	Ok !					
	(iii). Maxim	ım Punch	ing She	hear at column perimeter.						
	Maximum she	ar resista	nce,							
	$V_{\rm Rd,max} =$	0.5ud	[0.6(1 -	$f_{\rm ck}/250$	$]f_{\rm ck}/1.5$					
	= 0.5(4 ;	x 400) x	909 [0.6 (1	- 35/	250)] (35/1.5)			
	= 875	5 kN	>	V _{Ed,max}	= 4200	kN			Ok !	
	CRACKING					1947 B., 197, 1984 B. (1994)				
7.3.3	h = 100 Assume steel	0 mm stress un	> 200 r der quas	nm i perma	nent load	ding,		Need s	pesific m	easure !
	= 0.5	$5(f_{vk}/1.1)$	5)(A s. rec	$/A_{s, prov}$						
	= 0.5	5 (500/	1.15)	(2663 /	2815)					
	= 22	6 N/mm ²	-							
Table 7.2N	For design cra	ck width	= 0.3 m	m						
	Max. allowabl	e bar spa	cing =	200	mm					
	Max. bar spacing 1 =		1500 -	2(75)	- 16]/	13	-		2	
		=	103	mm	<	200	mm		Ok !	
	Max. bar space	ing 2 =	2400 -	2(75)	- 16]/	15				
		=	149	mm	<	200	mm		Ok !	

www.uthm.edu.my

