

Semester 2 2017/2018

DESIGN OF REINFORCED CONCRETE FOOTINGS

Dr. Zainorizuan Mohd Jaini Faculty of Civil and Environmental Engneering Universiti Tun Hussein Onn Malaysia 86400 Parit Raja, Batu Pahat, Johor, Malaysia

www.uthm.edu.my

With Wisdom, We Explore

From Soil Investigations To Foundation Design

- Foundation is the part of a structure which transmits the loads from the structure to the underlying soil or rock.
- It is usually placed below the surface of the ground. All soils compress noticeably when loaded and caused the supported structure to settle.
- Two essential requirements in the design of foundation are:
 - i. The total settlement of the structures shall be limited to a tolerably small amount
 - ii. The differential settlement of various parts the structure shall be eliminated as nearly as possible
- Requirement in EC2:
 - Design is similar as slab
 - Shear checking for vertical shear at 1.0d, punching shear at 2.0d and punching shear at column perimeter.

www.uthm.edu.my

www.uthm.edu.my

With Wisdom, We Explore

The Lotus Riverside, Shanghai, June 2009: Foundation design, geotechnical or construction failure?

www.uthm.edu.my

With Wisdom, We Explore

It is perhaps the ultimate example of foundation failure - a 100% loss of the structure. What happened?

The broken concrete pilings jutting out from the base. Concrete foundation pilings breaking?

www.uthm.edu.my

With Wisdom, We Explore

Classification of reinforced concrete foundation:

Simple/Shallow	Deep
 Isolated or pad footing Combined footing Raft foundation Strip footing Strap footing 	- Pile foundation

- Factor of selection: (i) the soil properties and conditions, (ii) the type of structure and loading, (iii) the permissible amount of differential settlement.
- □ The choice is usually made from experience but comparative designs are often necessary to determine the most economical

www.uthm.edu.my

With Wisdom, We Explore

Pad footing Shallow foundation Pile footing Deep foundation

www.uthm.edu.my

www.uthm.edu.my

With Wisdom, We Explore

Strap footing

www.uthm.edu.my

With Wisdom, We Explore

Raft footing

www.uthm.edu.my

Design Consideration

www.uthm.edu.my

- The major design considerations in the structural design of a footing relate to flexure, shear, bearing and bond.
- In these aspects, the design procedures are similar to those for beams and two way slabs supported on columns.
- Deflection control is not a consideration in the design of footing which are buried underground (and hence no visible).
- However, control of cracking and protection of reinforcement by adequate cover are important serviceability considerations, particularly in aggressive environments.
- Limit the crack width to 0.3 mm in a majority of footings.

Thickness and Size

www.uthm.edu.my

With Wisdom, We Explore

Thickness and size of footing:

The area at the base of the footing is determined from the safe bearing capacity of the soil.

$$Area = \frac{G_k + Q_k + W}{\text{S oil bearing capacity}}$$

 The thickness of footing is generally based on consideration of shear (predominate) and flexure, which are critical near the column location. The minimum effective depth of pad:

$$d = \frac{N_{Ed}}{V_{Rd\max}U_o}$$

Thickness based on shear criteria, where: N_{Ed} =Ultimate vertical load=1.35G_k+1.5Q_k v_{Rdmax} =0.5v f_{cd} =0.5[06(1- f_{ck} /250)](f_{ck} /1.5) u_{o} =Column perimeter

Soil Pressure

www.uthm.edu.my

- The distribution of soil pressure under a footing is a function of the type of soil and relative rigidity of the soil and the footing.
- For design purposes, it is customary to assume the soil pressures are linearly distributed, such that the resultant vertical soil force is collinear with the resultant downward force.
- For pad footing:

Flexural Design

www.uthm.edu.my

- The footing base slab bends upward into a saucer-like shape on account of the soil pressure underneath it.
- □ The critical section for bending is at the face of the column.
- The moment is taken on a section passing completely across the footing and is due to the ultimate loads on one side of the section. The moment and shear forces should be assessed using STR combination 1:

www.uthm.edu.my

With Wisdom, We Explore

Footing may fail in shear as beam shear or punching shear at the location shown in the figure below:

Location of critical shear section and perimeter

www.uthm.edu.my

With Wisdom, We Explore

Vertical shear

The critical section for vertical The critical section for punching shear is at a distance *d* from the shear is at the perimeter 2*d* from the face of the column. The punching

The vertical shear force is the sum outside the critical perimeter. The of the loads acting outside the shear stress is $v_{Ed} = V_{Ed}/ud$ where section. u is the critical perimeter.

If $V_{Ed} < V_{Rd,c} \rightarrow$ no shear reinforced is required.

 V_{Ed} = the design shear force $V_{Rd,c}$ =the concrete shear resistance

The critical section for punching shear is at the perimeter 2*d* from the face of column. The punching shear force is the sum of the loads outside the critical perimeter. The shear stress is $v_{Ed} = V_{Ed}/ud$ where *u* is the critical perimeter.

Punching shear

If $v_{Ed} < v_{Rd,c} \rightarrow$ no shear reinforced is required.

The maximum punching shear at the column face must not exceed the maximum shear resistance V_{Rdmax} .

www.uthm.edu.my

With Wisdom, We Explore

- Punching shear resistance can be significantly reduced in the presence of a coexisting bending moment, M_{Ed}, transmitted to the foundation.
- To allow for the adverse effect of the moment, which gives rise to a non-uniform distribution of shear around the control perimeter CI.6.4.3(3) of EC2 gives the design shear stress to be used in punching shear.

$$V_{Ed} = \beta \frac{V_{Ed}}{u_i d}$$

where;

 $\beta = 1 + k \frac{M_{Ed}}{V_{Ed}} \frac{u_1}{w_1} \qquad \qquad \text{Factor used to include the effect of} \\ \text{eccentric loads and bending moments} \\ k = \text{coefficient dependent on the ratio between the column dimension (c_1 and c_2).}$

www.uthm.edu.my

With Wisdom, We Explore

c ₁ /c ₂	≤0.5	1.0	2.0	≥ 3.0
k	0.45	0.60	0.70	0.80

 u_1 = the length of basic control perimeter

w₁= function of the basic control perimeter corresponds to the distribution of shear

 $w_1 = 0.5c_1^2 + c_1c_2 + 4c_2d + 16d^2 + 2\pi dc_1$

Shear distribution due to an unbalanced moment

www.uthm.edu.my

With Wisdom, We Explore

Vertical shear at 1.0d from column face is based on shear resistance, V_{Rd,c} > V_{ed}

 $V_{Rd,c} = [0.12k(100\rho_1 f_{ck})^{1/3}]bd \ge [0.035k^{3/2} f_{ck}^{-1/2}]bd$

 $V_{\min} = [0.35k^{3/2}f^{1/2}]bd$

Punching shear at 2.0d from column face based on punching stress:

$$V_{Rd,c} = rac{V_{min}}{ud} > V_{Ed} = rac{V_{Ed,punching}}{ud}$$

Punching shear at column perimeter is based on maximum shear resistance

$$V_{Rd,max} = 0.5 ud \left[0.6 \left(1 - \frac{f_{ck}}{250} \right) \right] \frac{f_{ck}}{1.5} > N_{Ed}$$

Crack Control

www.uthm.edu.my

With Wisdom, We Explore

- Use similar rules as for beam in CI.9.3 of EC2 and CI.7.3, Table 7.2N and 7.3N
- □ Steel stress for limiting crack width, w_{max}=0.3mm

$$f_{s} = \frac{f_{yk}}{1.15} \left[\frac{G_{k} + 0.3Q_{k}}{1.35G_{k} + 1.5Q_{k}} \right] \frac{1}{\delta}$$

or

$$f_{s} = 435 \left[\frac{G_{k} + 0.3Q_{k}}{1.35G_{k} + 1.5Q_{k}} \right] \left(\frac{A_{sreq}}{A_{sprov}} \right)$$

For detailing requirement, maximum allowable spacing is 250mm

Detailing

www.uthm.edu.my

Detailing

www.uthm.edu.my

Footing Design

www.uthm.edu.my

With Wisdom, We Explore

Example 4.1:

Pad footing under axial

With Wisdom, We Explore

A rectangular pad foundation is required to support a single column transferring an axial service load which consist of 600kN permanent load and 450kN variable load. Using the data provided, determine the suitable size of the footing and design the required reinforcement.

<u>Design data</u>:

f_{ck} f_{yk} Soil bearing capacity Column dimension Design life Exposure class

- = 25 N/mm2
- = 500 N/mm2
- = 200N/mm2
- = 300mm x 300mm
- = 50 years
- = XC2

www.uthm.edu.my

Ref.				Calcu	lations					Outpu	t
	SPECI	FICAT	<u>ION</u>								
					Axial F	Force, N					1
		N			Perm	nanent, C	7 k	=	600	kN	
***************************************		74	T		Varia	able, Q_k		= Years	450	kn 2.1 EN	
		ł			Design	life	50		(Table		1990)
					Exposu	re classe	es	=	XC2		
				1	Materia	als :					
			*****************		Conci	rete, j	f _{ck}	=	25	N/mm ²	
					Reinfo	orcemen	f_{yk}	=	500	N/mm ²	
	Column	size :			Unit we	eight of o	concrete	=	25	kN/m ³	
	300	x 300	mm		Soil bea	aring cap	acity	=	200	kN/m ²	
	*****				Assum	ed:	$\phi_{ m bar}$		16	mm	
	DURAI	BILIT	Y & B	OND R	EQUIR	EMEN	<u>TS</u>				
Table 4.2	Min. cov	ver with	regard	to bond	ц <i>с</i> _{міп,b}	=	16	mm			
Table 4.4N	Min. cov	ver with	regard	to dura	bility, $c_{\rm m}$	in,dur [—]	25	mm			
4.4.1.3	4.1.3 Allowance in design for deviation, Δc_{dev}				, =	10	mm				
4.4.1.1(2)	.1.1(2) Nominal cover,							Use:			
*****	c _{nom} =	= c _{min} ⊣	$-\Delta c_{\text{dev}}$	=	25 +	10 =	35	mm	C _{nom}	= 35	mm

www.uthm.edu.my

www.uthm.edu.my

	Soil pressure at	ulimate load,						
	$P = N_{\rm Ed}/A =$	1485 / 6.25	=	238	kN/m ²			
	Soil pressure pe	er m length, w =	238 x	2.5 =	594	kN/m		
	P~4							
	1.10	1.10	Maxim	um mom	et at			
		4	column	face,				
			<i>M</i> =	$wl^2/2$				
			=	594 x	1.10 ²	/2		
	ኮ ተ ተ ተ ተ ተ ተ ጎ ጎ ጎ ጎ ጎ	<u>`^^</u>	=	359	kNm		-	
	w = 594	kN/m						
6.1	MAIN REINF	ORCEMENT	A COMPANY OF COMPANY O					
	Effective depth	,						
	$d_{\rm eff} = h - c_{\rm no}$	$m - 1.5\phi_{bar}$						
	= 450	- 35 - (1.5 x	16) =	391	mm			
	Bending, Mome	nt, M =	359.4	kNm				
	K = M / b	$d^2 f_{\rm ck}$						
	= 359.4	x 10 ⁶ / (2500	x 391 ²	x 25)				
	= 0.038	$< K_{bal} =$	0.167					
		Compression re	inforcer	nent is n	ot requi	red		1

www.uthm.edu.my

	 	Į						çao 111 anii 111 anii 111 anii	a u aua como o comin		
	z =	d [0.5	+ / 0.2	5 - K/	1.134)]	= 0.97	<i>d</i> ≤	0.95d			
	$A_{\rm s} =$	M / 0.8	$7f_{\rm yk}z$								
4	=	359	x 10 ⁶ /	(0.87 x	500 x	0.95 x	391)				
	=	2224	mm ²								
									Main ba	r:	
9.2.1.1	Minimu	m and n	naximum	n reinfor	cement	area,				13	H16
	$A_{\rm s,min} =$	$0.26(f_{ct})$	$m/f_{\rm vk}$) be	d =	0.26 x	(2.56 /	500) x	bd		(2614	mm ²)
	=	0.0013	bd =	0.0013	x2500	x 391	=1304	mm ²			
	$A_{s,max} =$	0.04A _c	=	0.04	2500 x	450 =	45000	mm ²			
	SHEA	R		-							
	(i). V	ertical S	hear : C	ritical at	1.0d fr	om colu	mn face	•			
		~~				0.709					
		391	709								
			╘──╁		г		2.5 m				
					-4	The second					
	<u> </u>	<u> </u>	<u>^ ^ 1</u>			Constant of		G u			
	594	kN/m		Design	shear fo	orce,					
				$V_{\rm Ed} =$	594 x	0.709	ĺ				
				=	421	kN					

www.uthm.edu.my

6.2.2	Design shear resi	stance,						
	$V_{\rm Rd,c} = [0.12 k]$	$(100\rho_1 f_{\rm ck})^{1/3}$] <i>bd</i>					
	k = 1 + (200)	$(d)^{1/2} \leq 2.0$						
	= 1+(200 / 1	(391)'' = 1.72	≤ 2.0					
	$\rho_1 = A_{\rm sl}/bd$	≤ 0.02 [·]						
	= 2614 /	(2500 x 391)	=	0.0067	≤ 0.02			
	$V_{\rm Rd,c} = 0.12 {\rm x}$	1.72 x (100 x	0.0067	x 25)	x 2500	x 391		
	= 514411 N	= 514	kN					
	$V_{\min} = [0.035k]$	${}^{3/2}f_{\rm ck}{}^{1/2}$] bd						
	= 0.035 x	$1.72^{3/2} \times 25^{1/2}$	x 2500	x 391				
	= 384261 N	= 384	kN					
	So, V _{Rd,c} =	514.4 kN	>	V _{Ed}			Ok !	
6.4	(ii). Punching shea	ar at perimeter	2d fro	m colum	in face			
	Average d =	450 - 35 -	16 =	399	mm	A		
	2d = 2	2x399 =	798	mm				1

www.uthm.edu.my

	1777	111	(11)		Control	perimet	er,			
	///		\sim		u =	(4 x	300)			
	X				+	(2 x π	x 798)			
	798	300	798		=	6215	mm			
			300							
	1		<u> </u>	T/	Area w	ithin per	imeter			
	A			1	A =	(0.30)	2			
	\sum		1		+(4 x	0.30 x	0.798)			
	XIT	117	1//		+(π x	0.798	²)			
					=	3.05	m ²			
Punc	ning shear	r force,								
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	= 238 ((2.5 ² -	3.05)	=	761	kN				*****
Punc	ning shear	r stress,								****
$v_{\rm Ed}$ =	$= V_{\rm Ed} / u$	d	**************************************							*****
	= 761	$\mathbf{x} 10^3 /$	(6215	x 399)	=	0.31	N/mm ²			****
Shear	· resistanc	e,	*****							• • • • • • • • • • • • • • • • • • •
V _{Rd,c}	= 384	1×10^{3} /	(2500	x 399)			543 ANNO 244 AN	AYAYWAYAYAYAYAYAYAYAYAYAYAYAYA	1.000.000.000.000.00000000000000000000	*****
	= 0.39	N/mm ²			>	v_{Ed}			Ok!	
		outsection	Sec. 1		Vilation		-			

www.uthm.edu.my

	(iii). N	Maximu	n punch	ing shea	r at colu	ımn peri	meter.			
	Maxim	ım shea	r resista:	nce,						
	V _{Rd,r}	nax =	0.5ud [0.6(1 -	$f_{\rm ck}/250)$	$]f_{\rm ck}/1.5$				
	=	0.5(4 x	300) x	399 [0.6 (1	- 25/	250)] (25/1.5)		
	=	2155	kN	>	V _{Ed,max}	= 1485	kN		197 - 38 - 29 - 29 - 29 - 29 - 29 - 29 - 29 - 2	Ok !
	CRAC	KING								
7.3.3	h =	450	mm	> 200 n	nm				Need sp	esific measure !
	Steel st	ress und	er the a	ction of	quasi-pe	rmanen	t loading	5		
	$f_{\rm s} = [(0$	$G_k + 0.$	$3Q_{\rm k})/(1.$	$.35G_{k} +$	$1.5Q_{k})$	$(A_{\rm s.req}/A)$	$(f_{s,prov})$	yk/1.15)		
an a	$G_{\mathbf{k}} + 0$	$.3Q_k =$	600 +	(0.30	x 450)	=	735	kN		
	(1.35G)	+1.5Q	$(\mathbf{k}_{\mathbf{k}}) =$	1485	kN					
	$f_{\rm s} =$	(735 /	1485)	(2224	/2614)	(500 /	1.15)			
*******	=	0.49	x 0.85	x 435						-
	=	183	N/mm ²							
Table 7.3N	For des	ign crac	k width	= 0.3 m	m					
	Max. al	lowable	bar spa	cing =	250	mm				
	Max. ba	ar spaci	ng = [2500 -	2(43)	- 16]/	12			
			=	200	mm	<	250	mm		Ok !
								477 A 10 4		

www.uthm.edu.my

www.uthm.edu.my

With Wisdom, We Explore

Example 4.2:

Pad footing under axial + uniaxial-moment

www.uthm.edu.my

With Wisdom, We Explore

Design a rectangular pad footing of uniform thickness for a reinforced concrete column of size 300mm x 300mm and carrying axial load of 1500kN and ultimate bending moment of 50kNm.

Design data:

f_{ck} f_{yk} Soil bearing capacity Column dimension Nominal cover

- =25 N/mm2
- =500N/mm2
- = 200 N/mm2
- = 300mm x 300mm
- = 40mm

*Use a factor of 1.40 to change the design load to service load.

www.uthm.edu.my

Ref.				Calcu	lations				Output		
******	SPECIF	ICAT	ON							*****	
					Ultimat	e action	:				
		N			Axial	, N		=	1500	kN	
		Å	м	4 Y X Y X Y X Y X Y X Y X Y X Y X Y X Y	Mom	ent, M		=	50	kNm	
	••••••••••••••••••••••••••••••••••••••	1.	A	(v. v. v	Design	life	50	Years	(Table 2	2.1 EN	1990)
*****					Exposu	re class	es	=	XC2		
***********					Materia	ıls :					
***					Concr	ete,	fck	=	25	N/mm ²	
	Column s	size :			Reinfo	orcemen	$f_{\rm vk}$	=	500	N/mm ²	
	250	x 350	mm	da - 1	Unit weight of RC			=	25	kN/m ³	
	Assumed	ł∳ _{bar}	= 16	mm	Soil bea	uring cap	bacity	=	150	kN/m ²	
	DURAB	ILITY	& B(OND F	REQUIR	EMEN	<u>TS</u>				
Table 4.2	Min. con	c. cove	r regar	d to bo	nd, c _{min,b}	=	16	mm			
Table 4.4N	Min. con	c. cove	r regar	d to du	ability, c	min,dur =	25	mm			
4.4.1.3	Allowand	ce in de	sign for	deviat	ion, Δc_{de}	, =	10	mm			
4.4.1.1(2)	Nominal	cover,							Use:		
***************************************	<i>c</i> _{nom} =	• c _{min} +	$\Delta c_{\rm dev}$	=	25 +	10 =	35	mm	C nom	= 35	mm

www.uthm.edu.my

SIZE								
		S	Service	actions:				
			Axial, I	N =	1500	/1.40		****
				-	1071	kN		
			Momen	nt, $M =$	50	/1.40		
				-	36	kNm		
··	•••₹	م م	Assume	ed selfwe	eight of	footing		
		3 CC	10% of	service	load.		ļ	
—	Н	→ 4	Area of	f footing	required	1,		
	*		= 1.1N	/ Bearin	g capac	ity	-	
		=	= 1.1 x	1071	/ 150			
B	r i n –	=	= 7.86	m ²	1			
AN YOTA A ADDRESS ADDRES	L L I	ſ	Try size	$e:B \ge H$	l x h			
			2.50 x	3.50 x	0.65	m		
**************************************	x		<i>A</i> =	8.75	m ²			
Max. soil pr	ressure,		$I_{\rm xx} = B$	$H^{3}/12 =$	8.9323	m ⁴		
P = (N + W)	A + My/I		<i>y</i> =	H/2 =	1.75	m		
=(142 +10	071) / 8.75		Selfwei	ight,				
+ 36 x 1	1.75 / 8.93		=	25 x	8.75 x	0.65		
	146 kN/m ²		_	142	kN			
***************************************	< 150	kN/m ²						Size Ok!
			A				÷	

www.uthm.edu.my

www.uthm.edu.my

6.1	MAIN REINFO	DRCEMENT	-Sheed St		4				******
	Effective depth,				4.5		1		
	$d_{xeff} = h - c_{nom} - 0.5$	$5\phi_{\text{bar}} = 650$	- 35 -	0.5x16	= 607	mm			
	$d_{yeff} = h - c_{nom} - 1.2$	$5\phi_{\text{bar}} = 650$	- 35 -	1.5x16	= 591	mm			
	Longitudinal ba	ır	****						*****
	Bending Moment	M = 0	571	kNm	ve d			-	
********	K = M / bd	$f^2 f_{\rm ck}$	_		14. J. S.	2-208		1	
	= 571	$\times 10^6 / (2500)$	x 607 ²	x 25)					
	= 0.025	$< K_{\rm bal} =$	0.167						
		Compression re	inforcer	nent is n	ot requi	red			
	z = d [0.5 +	$+\sqrt{0.25 - K/2}$	1.134)]	= 0.98	$d \leq$	0.95d			
	$A_{\rm s} = M / 0.87$	$f_{\rm yk} z$						5 I I I	
*****	= 571 x	$\times 10^6$ / (0.87 x	500 x	0.95 x	607)		Use:	15	H16
	= 2277 n	nm ²						(3016	mm ²)
				* A VOIDO					

www.uthm.edu.my

9.2.1.1	Minimum and n	naximum re	inforce	ment a	irea,					
. 1	$A_{\rm s,min} = 0.26(f_{\rm ctr})$	$(f_{yk}) bd$	= 0.2	26 x	(2.56 /	500) x	bd			
	= 0.0013	bd = 0.0	013 x2	2500	x 607	= 1973	mm ²	Se - 2.		
	$A_{\rm s,max} = 0.04 A_{\rm c}$	= 0.	04 x 25	500 x	650 =	65000	mm ²			
4 1 1 1 1			-			- <u>1</u>				
	Transverse ba	ı r								
, py 5 1 10 10 10 10 10 10 10 10 10 10 10 10 1	Bending Momen	nt, M	=	380	kNm	4	97.8	-		
	K = M / b	$d^2 f_{\rm ck}$				4.72				
	= 380	x 10 ⁶ / (35	500 x :	591 [°]	x 25)					
	= 0.012	< <i>K</i>	$_{\rm bal} = 0.$	167						
j	1	Compressi	on reinf	forcem	nent is n	ot requi	red			
	z = d [0.5]	$+\sqrt{0.25}$ -	K/1.1	34)]	= 0.99	<i>d</i> ≤	0.95d		- 6	
	$A_{\rm s} = M / 0.8$	$7f_{\rm yk}z$								
	= 380	$\times 10^6 / (0.$	87 x 50)0 x	0.95 x	591)		Use:	25	H12
	= 1555	mm ²							(2828	mm ²)
					-	$\gamma \in \{1\}$	1.1	生生生	8 R. I	
9.2.1.1	Minimum and m	naximum re	inforce	ment a	irea,	- Appendix				
	$A_{\rm s,min} = 0.26(f_{\rm ct})$	$(f_{yk}) bd$	= 0.1	26 x	(2.56 /	500) x	bd		23 - A	
	= 0.0013	bd = 0.0	0013 x3	3500	x 591	= 2759	mm ²			1
	$A_{\rm s,max} = 0.04 A_{\rm c}$	= 0.	.04 x 3	500 x	650 =	91000	mm ²	1.57585		
1 m = 1										-

www.uthm.edu.my

www.uthm.edu.my

			h								
	$v_{\rm Ed} =$	1.08	(466 x	10 [°] /	8728	x 607)					
		0.10	N/mm ²								
	Shear re	e,	1.12								
	$v_{\rm Rd,c} =$	524	x 10 ³ /	(8728	x 599)			-			
	-	0.10	N/mm ²			>	v _{Ed}			Ok !	
			i i i i i i i i i i i i i i i i i i i								
	(iii). Maximum Punching Shear at column perimeter.										
1 0 T 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	Punching shear force at column perimeter										
	$V_{\rm Ed} =$	1500	kN								
	Column	Column perimeter $u_0 = (350 + 250) \times 2 =$							1.		
6.4.3(2)	Punching	Punching shear stress,									
	$v_{\rm Ed} =$										
	where	where $\beta = 1 + k (M_{\rm Ed}/V_{\rm Ed})(u_o/W_1)$									
		$W_1 = (0.5c_1^2) + c_1 c_2$									
Table 6.1			=	(0.50 x	350)+	(350 x	250)				
			=	0.15	x 10 ⁶	12					
		=	1 + [0.65 x	(50	$x 10^{6} /$	1500 x	10^{3})			
			x	(1200	/ 0.15	x10 ⁶)]			1.198.8.1		
		β =	1.17						100		
	v _{Ed}	1.17	1500	x 10 ³ /	1200	x 599)			1.1		
	=	2.45	N/mm ²								

www.uthm.edu.my

	Maximur	r resista	nce,								
1	V _{Rd,max}	=	0.5 [0.	$6(1 - f_{ck})$	/250)]f	_{ck} /1.5					
	=	0.5 [0.6 (1	- 25/	250)] (25/1.5)					
	=	4.50	N/mm ²			>	V _{Ed}	4.2535		Ok !	
	CRACK	ING									
7.3.3	h =	650	mm	> 200 n	nm						
	Assume steel stress under quasi permanent loading,										
	=	0.6	$(f_{yk}/1.1$	$5)(A_{s.reg})$	$A_{\rm s.prov}$						
	=	0.6	(500 /	1.15)	(2277 /	3016)					
	=	197	N/mm ²								
Table 7.3N	For design crack width = 0.3 mm										
	Max. allowable bar spacing				· 250	mm					
	Max. bar spacing $1 =$			2500 -	2(43)	- 16]/	14		-		
	·		=	171	mm	<	250	mm	100	Ok!	
	Max. ba	ng 2 =	3500 -	2(41)	- 12]/	24			152X		
			=	142	mm	<	250	mm		Ok !	
1			-		<u> </u>						
			-						×0, 3		

www.uthm.edu.my

