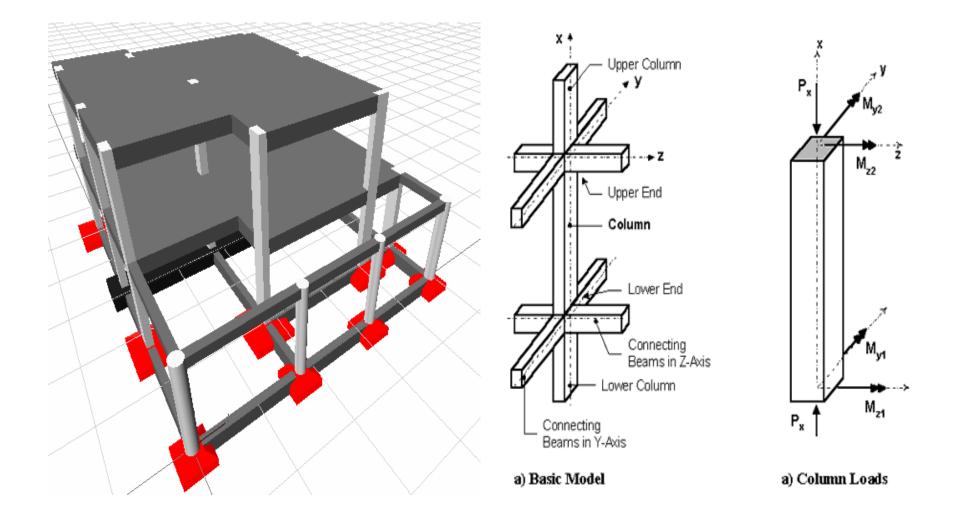


www.uthm.edu.my

Semester 2 2017/2018

RC COLUMN DESIGN

By Dr. Zainorizuan Bin Mohd Jaini Department of Structure and Material Engineering


FAKULTI KEJURUTERAAN AWAM DAN ALAM

- Columns act as vertical supports to beams and slabs, and to transmit the loads to the foundations.
- Columns are primarily compression members, although they may also have to resist bending moment transmitted by beams.
- Columns may be classified as braced or unbraced, short or slender, depending on various dimensional and structural factors.
- EC2 in term of column design provides:
 - 1) New guideline to determine the effective height of column, slenderness ratio and limiting slenderness.
 - 2) Design for second order (so-called P- Δ)
 - 3) Design moment method based on nominal curvature.
 - 4) Geometry imperfection: Deviations in cross-section dimensions are normally taken into account in the material factors and should not be included in structural analysis.

Introduction

Classification of column:

Braced	Unbraced
Where the lateral loads are resisted by shear wall or other form of bracing capable of transmitting all horizontal loading to the foundations.	resisted by the frame action of rigidity connected columns,

With a braced structure, the With an unbraced structure, axial forces and moments in the loading arrangement the columns are induced by which include the effects of the permanent and variable lateral load must also be actions (vertical) only.

Failure of Column

Damage of circular column during earthquake due to poor detailing of transverse reinforcement

Buckling of freeway support columns, San Fernando Valley

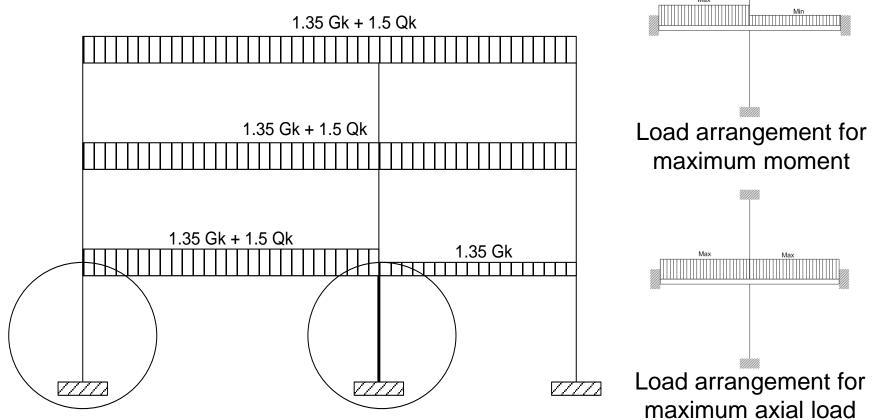
Shear failure of a column of the Shinkansen bridge

Failure of Column

Johor

MAG CAN

Kukup Laut, Johor 9 January 2014



Design Procedure

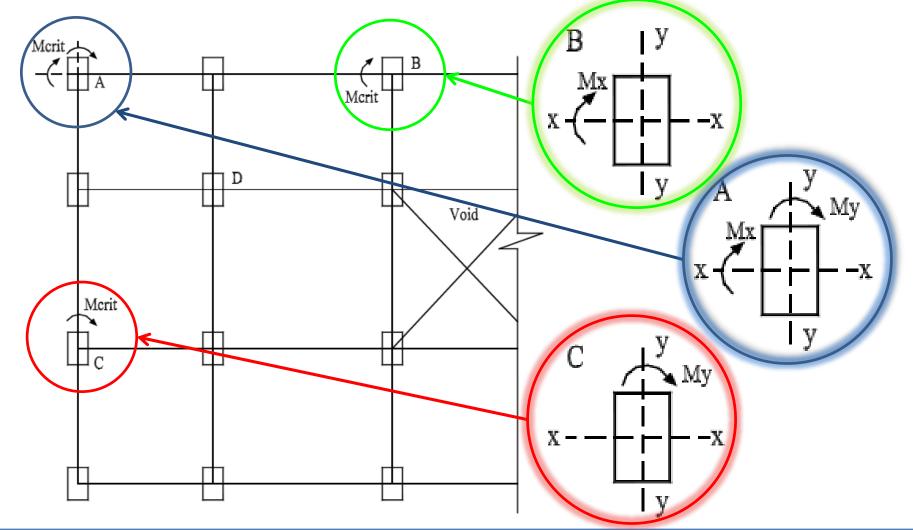
Step	Task		
		Standard	
1	Determine design life	UK NA to BS EN 1990 Table NA.2.1	
2	Assess actions on the column	BS EN 1991 (10 parts) and UK National Annexes	
3	Determine which combinations of actions apply	UK NA to BS EN 1990 Tables NA.A1.1 and NA.A1.2 (B)	
4	Assess durability requirements and determine concrete strength	BS 8500: 2002	
5	Check cover requirements for appropriate fire resistance period	Approved Document B. BS EN 1992–1–2	
6	Calculate min. cover for durability, fire and bond requirements	BS EN 1992-1-1 Cl. 4.4.1	
7	Analyse structure to obtain critical moments and axial forces	BS EN 1992–1–1 section 5	
8	Check slenderness	BS EN 1992-1-1 section 5.8	
9	Determine area of reinforcement required	BS EN 1992-1-1 section 6.1	
10	Check spacing of bars	BS EN 1992–1–1 sections 8 and 9	

- For a braced structure, the critical arrangement of the ultimate load is usually that which causes the largest moment in the column together with a larger axial load.
- The critical loading arrangement:

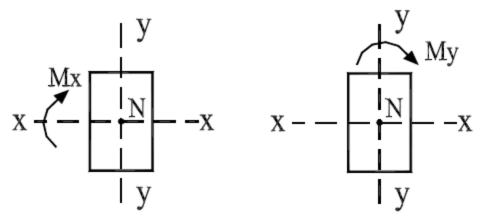
With Wisdom We Explore

Action and Response

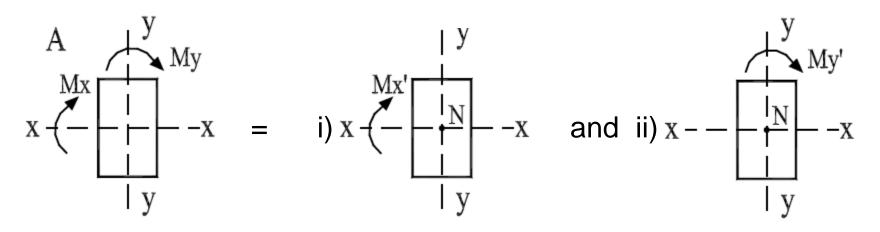
Bending moment and deflected profile of column



- In general, the magnitude and direction of moment that react on a column are dependent upon the following factors:
 - 1. Position of column in building, either located at internal, side or corner.
 - 2. Type of column, either short or slender.
 - 3. Shape of column, either square, rectangular or circular.
 - 4. Arrangement of beam supported by column, either symmetrical or unsymmetrical.
 - 5. Span of beam at both sides of column.
 - 6. Difference of load for beam at both sides of column.
- The above mentioned factors determine whether the induced moments are about single axis or double axis and about major or minor axis.
- Moment calculated from frame analysis is not the ultimate value of design moment and must not be used directly in column design.


Design Moment

Different moment conditions with respect to column positions

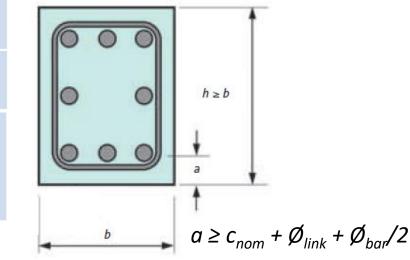


Column with bending at one axis

Column with biaxial bending

Durability and Fire Resistance

Standard fire resistance	Minimum dimensions (mm) Column width b _{min} /axis distance, a, of the main bars		
	Column exposed on more than one side		Column exposed on one side
	$\mu_{\rm fi} = 0.5$	$\mu_{\rm fi} = 0.7$	$(\mu_{\rm fi} = 0.7)$
R 60	200/36 300/31	250/46 350/40	155/25
R 90	300/45 400/38ª	350/53 450/40ª	155/25
R 120	350/45ª 450/40ª	350/57ª 450/51ª	175/35
R 240	450/75ª	b	295/70


Key

- a Minimum 8 bars
- **b** Method B may be used which indicates 600/70 for R 240 and $\mu_{\rm fi}$ = 0.7. See BS EN 1992–1–2 Table 5.2b

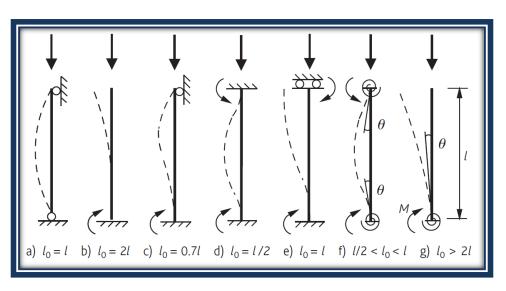
Note

The table is taken from BS EN 1992–1–2 Table 5.2a (method A) and is valid under the following conditions:

- 1 The effective length of a braced column under fire conditions $l_{o,n} \leq 3m$. The value of $l_{o,n}$ may be taken as 50% of the actual length for intermediate floors and between 50% and 70% of the actual length for the upper floor column.
- 2 The first order eccentricity under fire conditions should be ≤ 0.15b (or h). Alternatively use method B (see Eurocode 2, Part 1–2, Table 5.2b). The eccentricity under fire conditions may be taken as that used in normal temperature design.
- 3 The reinforcement area outside lap locations does not exceed 4% of the concrete cross section.
- 4 μ_n is the ratio of the design axial load under fire conditions to the design resistance of the column at normal temperature conditions. μ_n may conservatively be taken as 0.7.

- EC2 states that second order effects may be ignored if they are less than 10% of the first order effects.
- As an alternative, if the slenderness ratio (λ) is less than the slenderness limit (λ_{lim}), then second order effects can be ignored.
- The slenderness ratio (λ) of a column bent about an axis is given by Cl.5.8.3.2(1) as:

$$\lambda = \frac{I_0}{i} = \frac{I_0}{\sqrt{I/A}}$$


where:

 $I_o = \text{effective height of the column}$

- i = radius of gyration about the axis
- I = the second moment of area of the section about the axis
- A = the cross section area of the column

- Effective height
 - I_o is the height of a theoretical column of equivalent section but pinned at both ends.
 - This depends on the degree of fixity at each end and of the column.
 - Depends on the relative stiffness of the column and beams connected to either end of the column under consideration

EC2: CI.5.8.3.2

Different buckling modes and corresponding effective height for isolated column

- Formula to calculate the effective height (CI.5.8.3.2)
 - For braced member:

$$I_0 = 0.5I_{\sqrt{\left(1 + \frac{k_1}{0.45 + k_1}\right)\left(1 + \frac{k_2}{0.45 + k_2}\right)}}$$

- For unbraced member (which one maximum)

$$I_0 = I_0 \left(1 + 10 \frac{k_1 k_2}{k_1 + k_2} \right) \quad \text{or} \quad I_0 = I \left(1 + \frac{k_1}{1 + k_1} \right) \left(1 + \frac{k_2}{1 + k_2} \right)$$

where, k_1 and k_2 relative flexibility of the rotational restrains at end '1' and '2' of the column respectively.

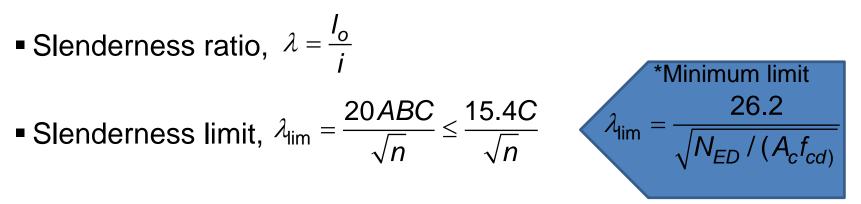
At each end k_1 and k_2 can be taken as:

 $k = \frac{\text{column stiffness}}{\sum \text{beam stiffness}}$

$$=\frac{(EI/L)_{column}}{\sum 2(EI/L)_{beam}}$$

$$=\frac{(I/L)_{column}}{\sum 2(I/L)_{beam}}$$

For a typical column in a symmetrical frame with span approximately equal length, k_1 and k_2 can be calculated as:


$$k_1 = k_2 = \frac{(I/L)_{column}}{4(I/L)_{beam}}$$

** It is also generally accepted that Table 3.19 of BS 8110 may conservatively be used to determine the effective length factor.

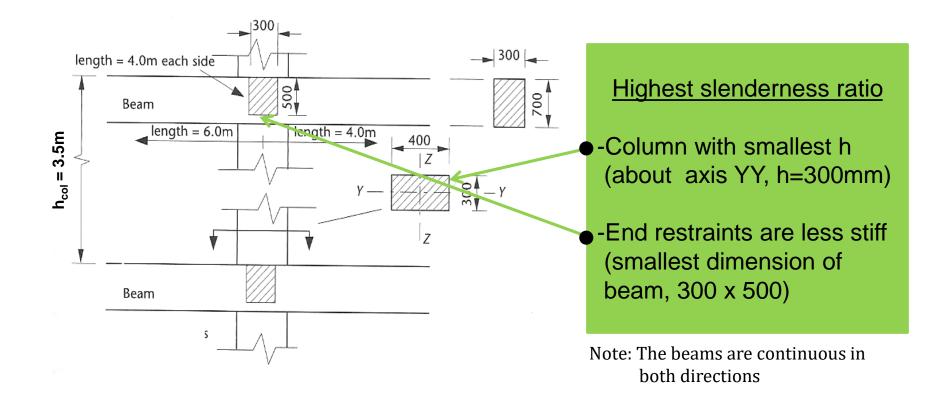
Slenderness

Limiting λ – Short or Slender Column

where

 $A = 1/(1+0.2\varphi_{ef}) \text{ (if } \varphi_{ef} \text{ is not known, } A = 0.7 \text{ may be used)}$ $B = (1+2w)^{1/2}$

w = reinforcement ratio (if *w* is not known, *B* = 1.1 may be used) C = 1.7 − r_m (if r_m is not known, C = 0.7 may be used) $n = (N_{ED})/(A_c f_{cd})$; f_{cd} =design compressive strength $r_m = (M_{01}/M_{02}) M_{01}, M_{02}$ are the first order end moments, in which $|M_{02}| \ge |M_{01}|$. If the end moments M_{01} and M_{02} give tension on the same side, r_m should be taken positive.



- Of the three factors A, B and C ; C will has the largest impact on λ_{lim} and is the simplest to calculate.
- An initial assessment of λ_{lim} can therefore be made using the default values for A and B, but including a calculation for C.
- Care should be taken in determining C because the sign of the moments makes a significant difference. For unbraced members C should always be taken as 0.7.
- If the comparison yield the condition:
 - $\lambda \leq \lambda_{\text{lim}}$ Short column and the slenderness effect may be neglected.
 - $\lambda \ge \lambda_{\text{lim}}$ Slender column and must be designed for an additional moment cause by its curvature at ultimate conditions.

Example 3.1

Determine if the column in the braced frame shown in the figure below is short or slender. The concrete strength $f_{ck} = 25 \text{ N/mm}^2$ and the ultimate axial load = 1280kN.

Effective column height, I_o

$$I_{col} = \frac{400 \times 300^3}{12} = 900 \times 10^6 \text{ mm}^4$$

$$I_{beam} = \frac{300 \times 500^3}{12} = 3125 \times 10^6 \text{ mm}^4$$

$$k_1 = k_2 = \frac{I_{col} / I_{col}}{\Sigma(2I_{beam} / I_{beam})} = \frac{900 \times 10^6 / 3 \times 10^3}{2(2 \times 3125 \times 10^6 / 4 \times 10^3)} = 0.096$$

$$I_o = 0.5I \sqrt{\left(1 + \frac{k_1}{0.45 + k_1}\right) \left(1 + \frac{k_2}{0.45 + k_2}\right)} = 0.59 \times 3.0 = 1.77 \text{ mm}}$$
Radius of gyration, $i = \sqrt{\frac{I_{col}}{A_{col}}} = \sqrt{\frac{bh^3 / 12}{bh}} = \frac{h}{3.46} = 86.6 \text{ mm}}$
Slenderness ratio, $\lambda = \frac{I_0}{i} = \frac{1.77 \times 10^3}{86.6} = 20.4$

For braced column:

$$\lambda_{\rm lim} = \frac{20 \,\text{ABC}}{\sqrt{n}}$$
$$\lambda_{\rm lim} = \frac{26.2}{\sqrt{N_{ED} / (A_c f_{cd})}}$$
$$f_{cd} = 0.85 \left(\frac{f_{ck}}{1.5}\right)$$

 $\sqrt{N_{ED} / (A_c f_{cd})} = \sqrt{1280 \times 10^3 / (400 \times 300 \times 0.85 \times 25 / 1.5)} = 0.866$

$$\lambda_{lim} = \frac{26.2}{0.866} = 30.25 > 20.4$$

Hence, compared with λ_{lim} , the column is short and second order moment effects would not have taken into account.

Principle of Design

Reinforcement Details

Longitudinal steel

A minimum of four bars is required in the rectangular column (one bar in each corner) and six bars in circular column. Bar diameter should not be less than 12mm.

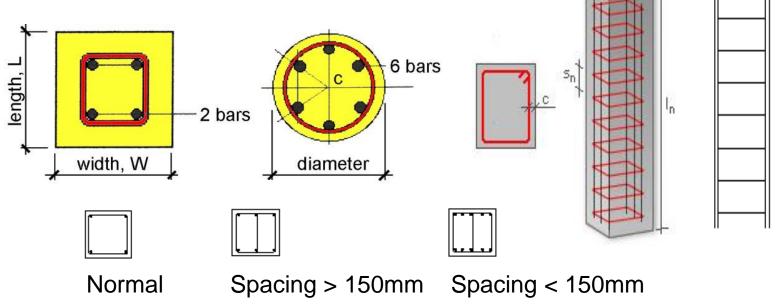
The minimum area of steel is given in CI.9.5.2(2) as:

$$A_{\rm s,min} = \frac{0.10 N_{Ed}}{0.87 f_{yk}} \ge 0.002 A_{\rm c}$$

Links

The diameter of the transverse reinforcement should not be less than 6mm or one quarter of the maximum diameter of the longitudinal bars.

$$\phi_{link} = \max\left\{0.25\phi_{main};6\right\}$$


Spacing requirements

The maximum spacing of transverse reinforcement (i.e. links) in columns (CI.9.5.3(1)) should not generally exceed:

 \checkmark 20 times the minimum diameter of the longitudinal bars.

 \checkmark the lesser dimension of the column.

✓ 400 mm.

Principle of Design

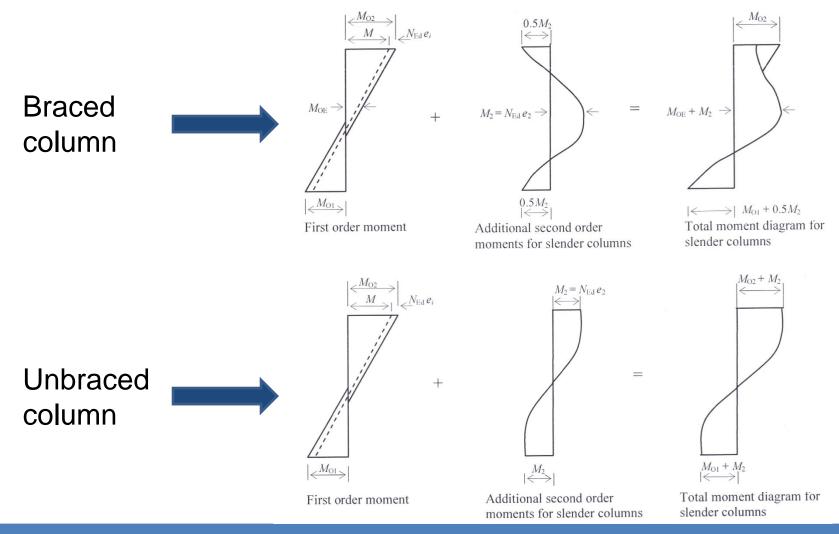
Design Moment

 For braced slender column, the design bending moment is defined as given in Cl.5.8.8.2:

$$M_{\rm Ed} = \max \; \{ M_{02} \; ; \; M_{0e} + M_2 \; ; \; M_{01} + \; 0.5 \; M_2 \; ; \; N_{Ed} \cdot e_0 \}$$

• For unbraced slender column:

$$M_{\rm Ed} = \max \{ M_{02} + M_2; N_{Ed}.e_0 \}$$


where:

$$\begin{array}{ll} M_{01} &= \min \left\{ M_{\mathrm{top}} \; ; \; M_{\mathrm{bot}} \right\} + N_{Ed} \cdot e_i \\ M_{02} &= \max \left\{ M_{\mathrm{top}} \; ; \; M_{bot} \right\} + N_{ed} \cdot e_i \\ e_0 &= \max \left\{ h/30 ; \; 20 \; \mathrm{mm} \right\} \\ e_i &= I_0/400 \\ M_{\mathrm{top}} &= \mathrm{Moment} \; \mathrm{at} \; \mathrm{the} \; \mathrm{top} \; \mathrm{of} \; \mathrm{the} \; \mathrm{column} \\ M_{\mathrm{bot}} &= \mathrm{Moment} \; \mathrm{at} \; \mathrm{the} \; \mathrm{bottom} \; \mathrm{of} \; \mathrm{the} \; \mathrm{column} \end{array}$$

Principle of Design

Moment diagram (first and second orders):

$$M_{0e} = 0.6 \ M_{02} + 0.4 \ M_{01} \ge 0.4 \ M_{02}$$

 M_{01} and M_{02} should be positive if they give tension on the same side.

 $M_2 = N_{Ed} \times e_2$ = The nominal second order moment where:

$$\begin{array}{ll} N_{Ed} &= \mbox{the design axial load} \\ e_2 &= \mbox{Deflection due to second order effects} \\ &= \frac{1}{r} \left(\frac{I_0^2}{c} \right) \\ I_o &= \mbox{effective length} \\ c &= \mbox{a factor depending on the curvature} \\ &= \mbox{distribution, normally } \pi^2 \approx 10 \\ 1/r &= \mbox{the curvature} = Kr.K\varphi.1/r_0 \\ \end{array}$$

Axial load correction factor, $Kr = (n_u - n) / (n_u - n_{bal}) < 1$ where, $n = N_{Ed} / (A_c f_{cd})$, $n_u = 1 + w$, $n_{bal} = 0.4$ $w = A_s f_{yd} / (A_c f_{cd})$

Creep correction factor, $K\varphi = 1 + \beta \varphi_{ef} \ge 1$

where: φ_{ef} = effective creep ratio = jM_{0Eqp} / M_{0Ed} = 0, if ($\varphi < 2$, M/N > h, 1/r₀ < 75) $\beta = 0.35 + f_{ck}/200 - \lambda/150$ $1/r_0 = \varepsilon_{yd} / (0.45d) = (f_{yd} / E_s) / 0.45d$

A non-slender column can be designed ignoring second order effects and therefore the ultimate design moment,

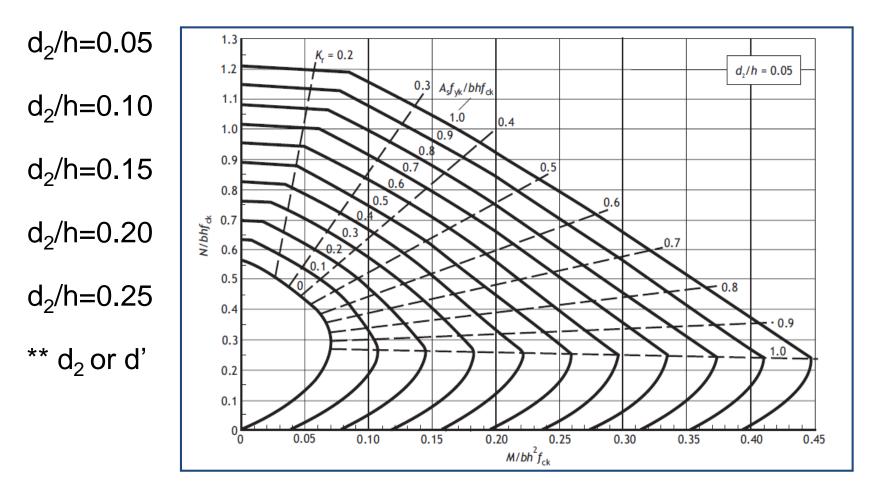
 $M_{\rm Ed} = M_{02}$ for short column

Principle of Design

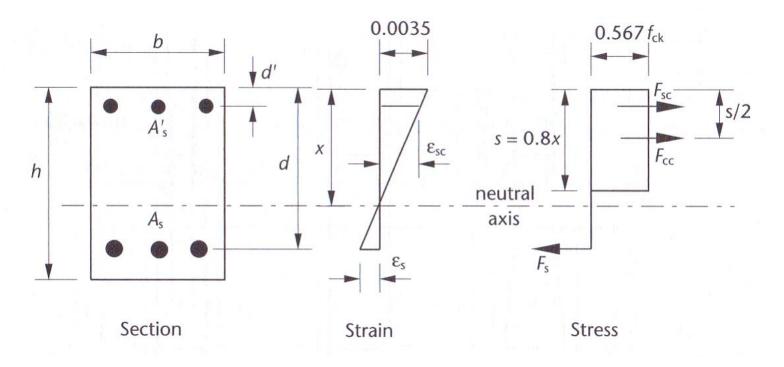
Method of Design

- Short column resisting moments and axial forces
- The area of longitudinal reinforcement is determined based on:

1.	Design chart or construction M-N interaction diagram	rectangular or circular section and symmetrical arrangement of reinforcement (d'/h = 0.05- 0.25 as provided by EC2)
2.	A solution a basic design equation	Unsymmetrical arrangement of reinforcement, or cross section is non rectangular
3.	An approximate method	


A column should not be designed for a moment less than $N_{Ed} \ge e_{min}$ where e_{min} has a grater value of h/300 or 20 mm

Principle of Design


Design Chart

Design chart for rectangular column

- Two expressions can be derived for the area of steel required (based on a rectangular stress block), one for the axial loads and the other for the moments.
- Interaction diagrams can be constructed for any arrangement of cross section.

Basic equation

$$N_{Ed} = F_{cc} + F_{sc} + F_{s} = 0.567 f_{ck} bs + f_{sc} A'_{s} + f_{s} A_{s}$$

$$M_{Ed} = F_{cc}\left(\frac{h}{2} - \frac{s}{2}\right) + F_{sc}\left(\frac{h}{2} - d'\right) - F_{s}\left(d - \frac{h}{2}\right)$$

where;

 N_{Ed} = design ultimate axial load

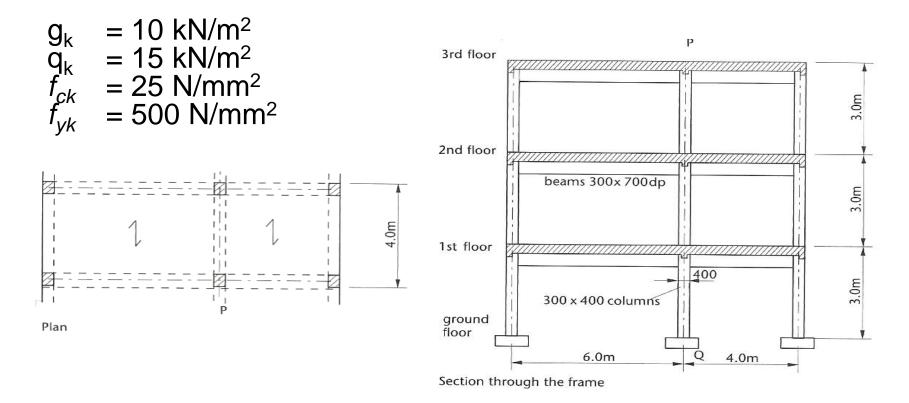
 M_{Ed} = design ultimate moment

- s = the depth of the stress block = 0.8x
- A'_{s} = the area of longitudinal reinforcement in the more highly compressed face
- A_s = the area of reinforcement in the other face
- f_{sc} = the stress in reinforcement A'_s
- f_s = the stress in reinforcement A_s , negative when tensile

Basic Equation

Area of reinforcement required to resist axial load:

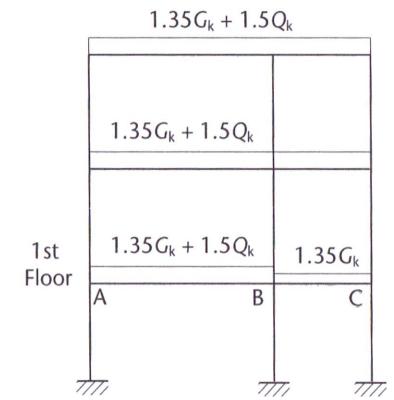
 $A_{sN} / 2 = \left[\left(N_{Ed} - f_{cd} b d_c \right) \right] / \left[\left(\sigma_{sc} - \sigma_{st} \right) \gamma_c \right]$


• While the total are of reinforcement required to resist moment: $A_{sM} / 2 = \left[M - f_{cd} b d_c \left(h / 2 - d_c / 2 \right) \right] / \left[\left(h / 2 - d_2 \right) \left(\sigma_{sc} + \sigma_{st} \right) \gamma_c \right]$

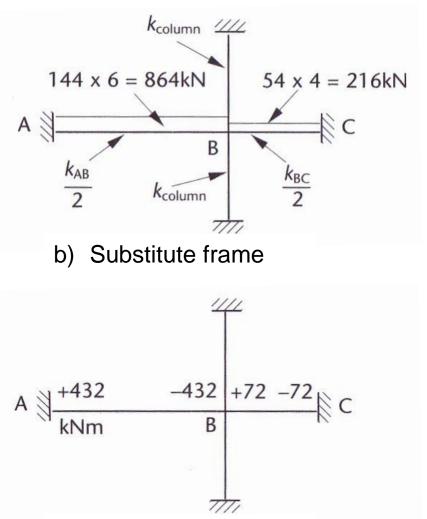
where;

 N_{Ed} = Axial load f_{cd} = Design value of concrete compressive strength $\sigma_{sc}(\sigma_{st})$ = Stress in compression (and tension) reinforcement b = Breadth of section; h = Height of section γ_c = Partial factor for concrete (1.5) d_c = Effective depth of concrete in compression = $\lambda x \le h$ λ = 0.8 for \le C50/60 x = Depth to neutral axis

Figure 3.2 shows a frame of heavily loaded industrial structure for which the centre column along line PQ are to be designed in this example. The frame at 4m centres are braced against lateral forces and support the following floor loads:


Maximum ultimate load at each floor: = $4.0 (1.35g_k + 1.5q_k)$ per meter length of beam = $4.0 (1.35 \times 10 + 1.5 \times 15)$ = 144 kN/m

Minimum ultimate load at each floor: = $4.0 \ge 1.35g_k$ = $4.0 \ge (1.35 \ge 10)$ = 54 kN per meter length of beam


Column load: 1st floor = $144 \ge 6/2 + 54 \ge 4/2 = 540 \ge 100$ 2nd and 3rd floor = $2 \ge 144 \ge 10/2 = 1440 \ge 100$ Column self weight = $2 \ge 144 \ge 10/2 = 1440 \ge 100$ N_{Ed} = $28 \ge 1000 \ge 1000$ N_{Ed} = $2008 \ge 1000$ $= 26 \ge 1000$

Example 3.2

a) Critical loading arrangement for centre columns at 1st floor

c) Fixed end moments

Member stiffness are

$$\frac{k_{AB}}{2} = \frac{1}{2} \times \frac{bh^3}{12L_{AB}} = \frac{1}{2} \times \frac{0.3 \times 0.7^3}{12 \times 6} = 0.71 \times 10^{-3}$$
$$\frac{k_{BC}}{2} = \frac{1}{2} \times \frac{0.3 \times 0.7^3}{12 \times 4} = 1.07 \times 10^{-3}$$
$$k_{col} = \frac{0.3 \times 0.4^3}{12 \times 3.0} = 0.53 \times 10^{-3}$$

Therefore

$$\sum k = (0.71 + 1.07 + 2 \times 0.53) 10^{-3}$$

Distribution factor for the column

$$DF_{col} = \frac{k_{col}}{\sum k} = \frac{0.53}{2.84} = 0.19$$

Fixed end moment at B

$$FEM_{BC} = \frac{144 \times 6^2}{12} = 432$$
kNm
 $FEM_{CB} = \frac{54 \times 4^2}{12} = 72$ kNm

Thus,

Column moment

M = 0.19(432 - 72) = 68.4kNm

Design moment allowing for geometric imperfections

 $M_{Ed} = M + \frac{N_{Ed} l_o}{400}$

For underside of 1st floor

 $M_{Ed} = 68.4 + \frac{2008 \times 2.34}{400} = 68.4 + 11.75 = 80.15 \text{kNm}$

For topside of 1st floor

$$M_{Ed} = 68.4 + \frac{1468 \times 1.8}{400} = 68.4 + 6.61 = 75.01$$
kNm

The minimum moment in both cases is $N_{Ed} \times e_{min}$ where $e_{min} = 20$ mm (>h/30=400/30=13.3mm) which in neither case is critical.

At the 3^{rd} floor

$$\sum k = (0.71 + 1.07 + 0.53)10^{-3} = 2.31 \times 10^{-3}$$

and Column moment

$$M = \frac{0.53}{2.31} (432 - 72) = 82.6 \text{kNm}$$

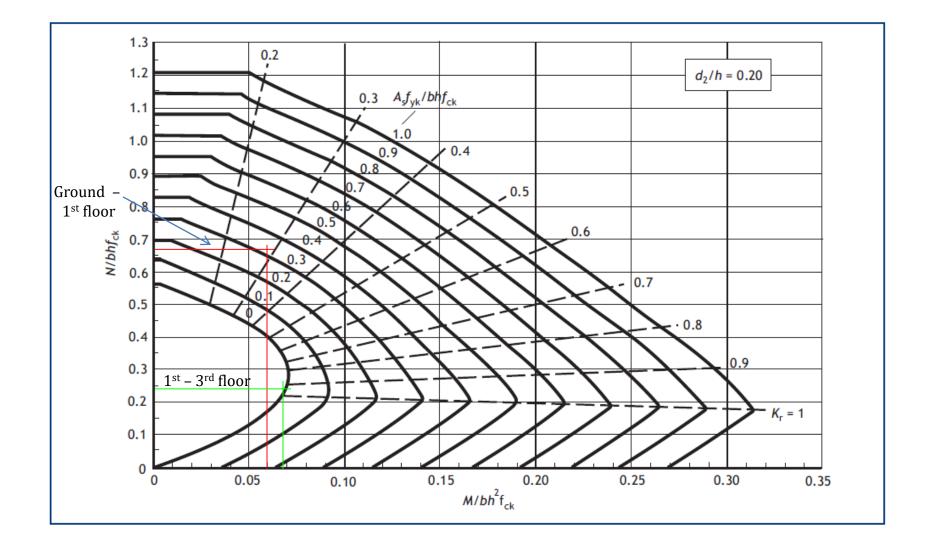
$$M_{Ed} = M + \frac{N_{Ed} l_o}{400}$$
$$M_{Ed} = 82.6 + \frac{734 \times 1.8}{400} = 82.6 + 3.30 = 85.90 \text{kNm}$$

 $M_{Ed} > N_{Ed} \times e_{min}$

Using the design chart:

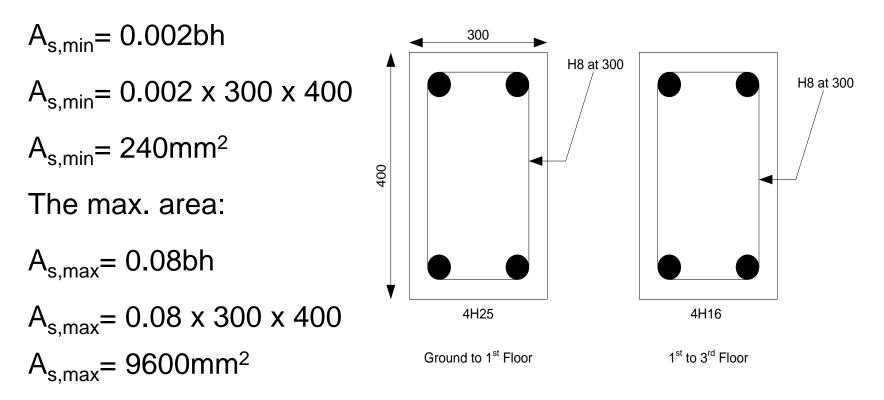
Assume cover = 50mm

d'/h = 80/400 = 0.2


Ground to 1st floor:

$$N_{Ed}/bhf_{ck} = 0.67$$
, $M_{Ed}/bh^2 f_{ck} = 0.067 \Rightarrow A_s f_{yk}/bhf_{ck} = 0.3$
 $\Rightarrow \qquad A_s = 1800 \text{mm}^2$

1st to 3rd floor:


 $N_{Ed}/bhf_{ck} = 0.24$, $M_{Ed}/bh^2 f_{ck} = 0.07 \rightarrow A_s f_{yk}/bhf_{ck} = 0.0$ $\rightarrow \qquad A_{s,min} = 240 \text{mm}^2$

The min. area allowed:

Although EC2 permits the use of 12mm main steel, 16mm bars have been used to ensure adequate rigidity of the reinforcing cage.

Floor	N _{ed} (kN)	M _{Ed} (kNm)	$\frac{N_{Ed}}{bhf_{ck}}$	$\frac{M_{Ed}}{bh^2 f_{ck}}$	$\frac{A_s f_{yk}}{bh f_{ck}}$	As (mm²)
3rd u.s	540	82.6	0.18	0.07	0	240
2nd t.s	734 + 540	68.4	0.24	0.06	0	240
2nd u.s	1274	68.4	0.42	0.06	0	240
1st t.s	1468 + 540	68.4	0.49	0.06	0.10	600
1st u.s	2008	68.4	0.67	0.06	0.30	1800
u.s – unde t.s – top s		1st floor = 144 2nd and 3rd fl Column self w	$oor = 2 \times 1$	44 x 10/2	= 540 kN = 1440 kN = 28 kN	Total = 2008 kN

The effects of biaxial bending may be checked using Eq.(5.39), CI.5.8.9, which was first developed by Breslaer:

$$\left(\frac{M_{Edz}}{M_{Rdz}}\right)^{a} + \left(\frac{M_{Edy}}{M_{Rdy}}\right)^{a} \le 1.0$$

where;

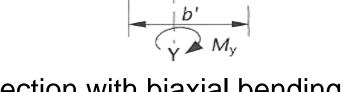
- $M_{Edz,y}$ = Design moment in the respective direction including second order effects in a slender column
- $M_{\text{Rdz,y}}$ = Moment of resistance in the respective direction a = 2 for circular and elliptical sections; refer to Table 1 for rectangular sections

$$N_{\rm Rd} = A_{\rm c} f_{\rm cd} + A_{\rm s} f_{\rm yd}$$

N _{Ed} /N _{Rd}	0.1	0.7	1.0
a	1.0	1.5	2.0
Note Linear interpolation	may be used.	alue of a for recta	angular sections

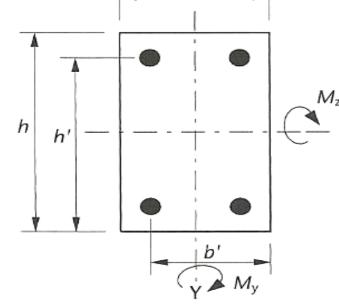
Either
$$\frac{e_z}{b} / \frac{e_y}{h} \le 0.2$$
 or $\frac{e_y}{h} / \frac{e_z}{b} \le 0.2$ Must bigger than 0.2 for biaxial moments

where e_y and e_z are the first-order eccentricities in the direction of the section dimensions b and h respectively.


If $\frac{M_z}{h'} \ge \frac{M_y}{b'}$, then the increased single axis design moment is $M'_z = M_z + \beta \frac{h'}{b'} M_y$

If $\frac{M_z}{h'} < \frac{M_y}{b'}$, then the increased single axis design moment is $M'_y = M_y + \beta \frac{h'}{b'} M_z$ **Design Under Biaxial Bending**

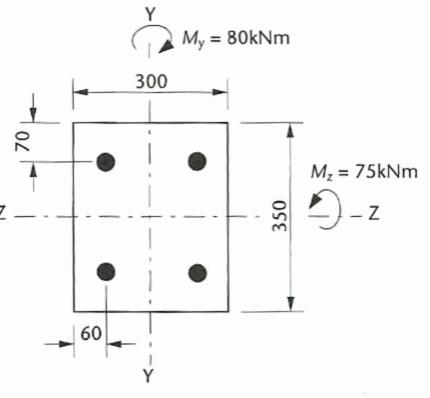
The dimension h' and b' are defined in the figure below and the coefficient β is specified as:


Value coefficient β for biaxial bending

$\frac{N_{Ed}}{bhf_{ck}}$	0	0.1	0.2	0.3	0.4	0.5	0.6	≥0.7
β	1.0	0.9	0.8	0.7	0.6	0.5	0.4	0.3

Section with biaxial bending

 $\beta = 1 - \frac{N_{Ed}}{hhf}$



Design of column for biaxial bending. The column section shown in the figure below is to be designed to resist an ultimate axial load plus moments: γ

- ultimate axial load = 1200kN
- moment of $M_z = 75$ kNm
- moment of $M_y = 80$ kNm.

The characteristic strength:

- $f_{ck} = 25N/mm^2$
- $f_{yk} = 500 \text{N/mm}^2$

$$e_z = \frac{M_z}{N_{Ed}} = \frac{75 \times 10^6}{1200 \times 10^3} = 62.5mm$$

$$e_y = \frac{M_y}{N_{Ed}} = \frac{80 \times 10^6}{1200 \times 10^3} = 66.7mm$$

Thus,

$$\frac{e_z}{h} / \frac{e_y}{b} = \frac{62.5}{350} / \frac{66.7}{300} = 0.8 > 0.2$$

and

$$\frac{e_y}{b} \Big/ \frac{e_z}{h} = \frac{66.7}{300} \Big/ \frac{62.5}{350} = 1.24 > 0.2$$

Hence the column must be designed for biaxial bending

$$\frac{M_z}{h'} = \frac{75}{(350 - 70)} = 0.268$$
$$\frac{M_y}{b'} = \frac{80}{(300 - 60)} = 0.333$$
$$\frac{M_z}{h'} < \frac{M_y}{b'}$$

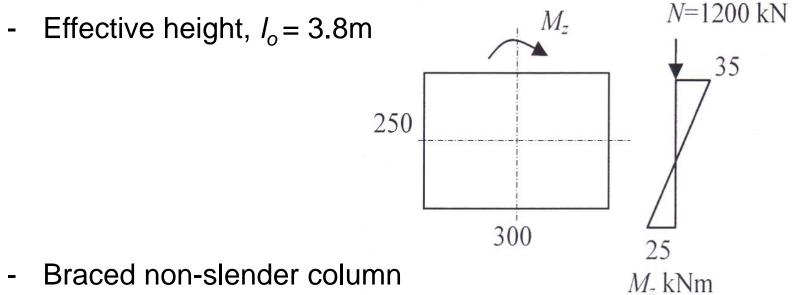
Therefore the increased single axis design moment is

$$M'_{y} = M_{y} + \beta \frac{b'}{h'} \times M_{z}$$
$$\frac{N_{Ed}}{bhf_{ck}} = \frac{1200 \times 10^{3}}{300 \times 350 \times 25} = 0.46$$

From table, $\beta = 0.54$

$\frac{N_{Ed}}{bhf_{ck}}$	0	0.1	0.2	0.3	0.4	0.5	0.6	≥0.7
β	1.0	0.9	0.8	0.7	0.6	0.5	0.4	0.3

$$M'_y = 80 + 0.54 \left(\frac{240}{280}\right) \times 75 = 114.7kN$$


Thus

$$\frac{M_{Ed}}{bh^2 f_{ck}} = \frac{114.7 \times 10^6}{350 \times (300)^2 \times 25} = 0.15$$
$$\frac{d'}{h} = \frac{70}{350} = 0.2 \Rightarrow \frac{A_s f_{yk}}{bh f_{ck}} = 0.47$$

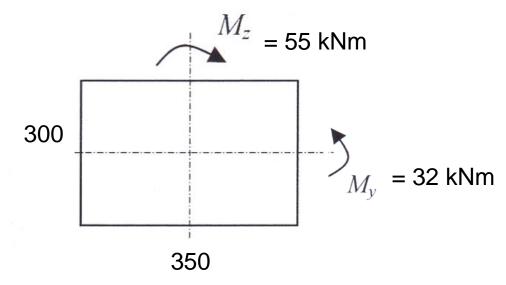
Therefore required $A_s = 2467 \text{mm}^2$. So, provide 4H32

Design the longitudinal and transverse reinforcement for the column shown in the figure below. The column is subjected to 50 years working life, 1 hour fire resistance and build inside building. Use grade C25/30 concrete, and grade 500 steel reinforcement.

- Short column bend about major axis

	SPECIFICATION	Classifi	cation:	Braced	non-slender column				
	Material:				Axial fo	orce, N	Ed =	1200	kN
	Concrete, f_{dk} =	= 25	N/mm ²			z			
	Reinforcement, f_{yk} =	= 500	N/mm ²		/	M		35	kNm
	Exposure class	XC1			, ,			VIA	
	Fire resistance	1.0	hours	Y		1	Y	1	
	Design life	50	years	-		-	250	8	
	Size, $b \ge h = 25$	0 x 300	mm			<u>i</u>		A	
	Effective length, $l_o =$	4.2	m		z	• 300			
	Assumed : ϕ_{link}	= 6	mm				25	kNm	
	$\phi_{\text{bar}} =$	= 20	mm					Mz	
	DURABILITY, BO	ND & FI	RE RE	SISTAN	NCE				
Table 4.2	Min. cover with regard	d to bond.	C min.b	=	20	mm			
Table 4.4	Min. cover with regard	d to dural	oility, C n	nin,dur =	15	mm			
	Min. required axis dist	ance for	R60	fire resi	stance		EN 199	2-1-2	
Table 5.2a.	$a_{\rm sd} = 36 \rm mm$								
	Min. concrete cover v	vith regar	d to fire.						
	$C_{\min} = a_{sd} - \phi_{link} - \phi_{bar}/2$	2 = 36 -	6 -	20/2=	20.0	mm			
	Allowance in design for	or deviation	on, ΔC_{dt}	ev =	10	mm			
4.4.1.1(2)	Nominal cover,						Use:		
	$C_{\text{nom}} = C_{\min} + \Delta C_{\text{dev}}$	= 20 +	10 =	30	mm		C_{nom}	= 30	mm

5.8.8.2	DESIGN MOMENT	
	For non-slender column the design moment,	
	$M_{\rm Ed} = {\rm Max} \{ M_{\rm o2}, M_{\rm min} \}$	
	where	
	$M_{\rm o2} = M + N_{\rm Ed}. e_{\rm i}$	
	$M = Max\{M_{bot}, M_{top}\} = 35.0 \text{ kNm}$	
5.2(7)	$e_i = (l_0/400) = 4200 / 400 = 10.5 \text{ mm}$	
	$M_{02} = 35.0 + (1200 \times 0.0105) = 47.6 \text{ kNm}$	
6.1(4)	$M_{\rm min} = N_{\rm Ed.}e_{\rm o}$	
	$e_o = h/30 \ge 20$	
	$= 300/30 = 10 \text{ mm} \ge 20 \text{ mm}$	
	$M_{\rm min} = 1200 \text{ x} 0.020 = 24.0 \text{ kNm}$	
	$\implies M_{\rm Ed} = 47.6 \rm kNm$	


	2	ORCE										
	$d_2 = C$	$d_2 = C + \phi_{\rm link} + \phi_{\rm bar}/2$			6 +	20/2	= 4	46	mm			
	d 2/h	= 46	/ 300	= 0.15								
	N/bhf	ck =	1200	x 10 ³ /	(250 x	300 x	25)					
		=	0.64									
	M/bh	${}^{2}f_{\rm ck} =$	47.6	x 10 ⁶ /	(250 x	$300^2 x$	25)					
		=	0.08									
Design	Asfyk/	$bhf_{ck} =$	0.35									
Chart												
	$A_{\rm s} =$	0.35	bhfck /	fyk						Use :	4H	20
	=	0.35	(250 x	300 x	25) /	500	-				2H	and the second second
		1313									(1483	mm^2

$A_{\rm s,min}$	$= 0.1N_{\rm H}$	$E_{\rm d}/f_{\rm vd} =$	$0.1N_{\rm Ed}$	/ (0.87f	yk)				z	
=	0.1	x 1200	x 10 ³ /	(0.87 x	500)				i	9
=	276	mm ²	or	0.002	4 _c =	150	mm^2	0	1	0
							,	b	_	
$A_{s,max}$	= 0.04	$A_{\rm c} =$	0.04	(250 x	300) =	3000	mm		z	-
Links	d min =	the larg	er of						Ť	
Links,				5.0	mm				Ħ	
	or	6	mm							
	$S_{v max}$	= the les	sser of					1		
	=	20 x	(12) =	240	mm					
	or	250	mm							
	or	400	mm		Use :	H6 -	240			
AI	section	300	mm bel	ow and	above be	am and			-	
	the summer a rest	A		general second se					-	
					Llass	116	140			
					Use :	H0 -	140	h	-	
	= A s,max Links, At	$= 0.1$ $= 276$ $A_{s,max} = 0.04$ $Links, \phi_{min} =$ $= 0$ $S_{v max}$ $S_{v max}$ $= 0$ $S_{v max}$ $S_{v max}$ $= 0$ $S_{v max}$ S_{v	$= 0.1 \times 1200$ $= 276 \text{ mm}^2$ $A_{s,max} = 0.04A_c =$ $\text{Links, } \phi_{min} = \text{the larg}$ $= 0.25 \times \text{or } 6$ $S_{v max} = \text{the less}$ $= 20 \times \text{or } 250$ $\text{or } 400$ $\text{At section } 300$	$= 0.1 \times 1200 \times 10^{3} / $ $= 276 \text{ mm}^{2} \text{ or}$ $A_{s,max} = 0.04A_{c} = 0.04$ $\text{Links, } \phi_{min} = \text{the larger of}$ $= 0.25 \times (20) = $ or 6 mm $S_{v max} = \text{the lesser of}$ $= 20 \times (12) = $ or 250 mm or 400 mm $\text{At section} 300 \text{ mm bel}$	$= 0.1 \times 1200 \times 10^{3} / (0.87 \times 10^{3}) = 276 \text{ mm}^{2} \text{ or } 0.002 \text{ A} = 276 \text{ mm}^{2} \text{ or } 0.002 \text{ A} = 0.04 \text{ (250 x} = 0.04 \text{ (250 x} = 0.25 \times (20) = 5.0 \text{ or } 6 \text{ mm} = 0.25 \times (20) = 5.0 \text{ or } 6 \text{ mm} = 20 \times (12) = 240 \text{ or } 250 \text{ mm} = 0.250 \text{ m} = 0.250 \text{ m} $	Links, $\phi_{\min} =$ the larger of = 0.25 x (20) = 5.0 mm or 6 mm $S_{v \max} =$ the lesser of = 20 x (12) = 240 mm or 250 mm or 400 mm Use : At section 300 mm below and above be	$= \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$= 0.1 \times 1200 \times 10^{3} / (0.87 \times 500)$ $= 276 \text{ mm}^{2} \text{ or } 0.002A_{c} = 150 \text{ mm}^{2}$ $A_{s,max} = 0.04A_{c} = 0.04 (250 \times 300) = 3000 \text{ mm}^{2}$ $\text{Links, } \phi_{min} = \text{the larger of}$ $= 0.25 \times (20) = 5.0 \text{ mm}$ or 6 mm $S_{v max} = \text{the lesser of}$ $= 20 \times (12) = 240 \text{ mm}$ or 250 mm or 400 mm Use : H6 - 240 $\text{At section } 300 \text{ mm below and above beam and}$ $\text{at lapped joints, } S_{v max} = 0.6 \times 240 = 144 \text{ mm}$	$= 0.1 \times 1200 \times 10^{3} / (0.87 \times 500)$ $= 276 \text{ mm}^{2} \text{ or } 0.002A_{c} = 150 \text{ mm}^{2}$ $A_{s,max} = 0.04A_{c} = 0.04 (250 \times 300) = 3000 \text{ mm}^{2}$ Links, $\phi_{min} = \text{the larger of}$ $= 0.25 \times (20) = 5.0 \text{ mm}$ or 6 mm $S_{v max} = \text{the lesser of}$ $= 20 \times (12) = 240 \text{ mm}$ or 250 mm or 400 mm Use : H6 - 240 At section 300 mm below and above beam and at lapped joints, $S_{v max} = 0.6 \times 240 = 144 \text{ mm}$	$A_{s,min} = 0.1N_{Ed}/f_{yd} = 0.1N_{Ed}/(0.87 \times 500)$ $= 0.1 \times 1200 \times 10^{3} / (0.87 \times 500)$ $= 276 \text{ mm}^{2} \text{ or } 0.002A_{c} = 150 \text{ mm}^{2}$ $A_{s,max} = 0.04A_{c} = 0.04 (250 \times 300) = 3000 \text{ mm}^{2}$ $Links, \phi_{min} = \text{ the larger of}$ $= 0.25 \times (20) = 5.0 \text{ mm}$ or 6 mm $S_{v max} = \text{ the lesser of}$ $= 20 \times (12) = 240 \text{ mm}$ or 250 mm or 400 mm $Use : H6 - 240$ $At \text{ section } 300 \text{ mm below and above beam and}$ $at \text{ lapped joints, } S_{v max} = 0.6 \times 240 = 144 \text{ mm}$

Design the longitudinal and transverse reinforcement for a rectangular column size 300 x 350 mm. This column is classified as non-slender and subjected to ultimate axial load of 1800kN and bending moments of 55 kNm and 32 kNm about major and minor axis respectively. Use grade C25/30 concrete, grade 500 steel reinforcement and nominal cover of 30mm.

- Short column under biaxial moments

	SPECIFICAT	TION								
	Classification:	Short br	aced co	olumn						
	Material:					Axia	al force,	$N_{\rm Ed} =$	1800	kN
	Concrete,	$f_{\rm ck}$ =	25	N/mm ²			-			
	Reinforcemen	t, $f_{yk} =$	500	N/mm ²		-	Mz			
	Size, $b \ge h =$					<u> </u>	<u>``</u>			
	Effective lengt	h, $l_{oz} =$	3.70	m	300		i	X My		
		loy =	3.00	m	у			Vy		
	Slenderness rat	tio, $\lambda_z =$	27.7				i J			
		λ _y =	34.2			350	ż			
	Assumed :	$\phi_{\text{link}} =$	6	mm		Bending	g momen	nt:		
		$\phi_{\text{bar}} =$	25	mm		$M_z =$	55	kNm		
	Nominal cover	$C_{\text{nom}} =$	30	mm		M_y -	32	kNm	Sarly Sec. Synn-	10.22 hu 1
5.8.8.2	DESIGN MO	MENT								
5.2(7)	The imperfecti	on mome	nt,							
	$M_{\rm imp} = N_{\rm Ed}$									
ł.	$M_{\rm imp,z} =$									
	$M_{imp,y} =$	1800 x	(3.00	/ 400)	=	13.5	kNm			
-	The design mo	ment incl	uding th	ne effect	t of imp	erfection	I .			
	$M_{\rm Edz} =$	55 +	16.7 =	71.7	kNm					
	$M_{\rm Edy} =$	32 +	13.5 =	45.5	kNm					

5.8.9	CHECI										1
	$e_z = M$	d_{edy}/N_1	_{Ed} =	71.7	x 10 ⁶ /	1800	$x 10^3 =$	40 mm			
	$e_y = M$	$_{\rm y} = M_{\rm edz} / N_{\rm Ed} =$			x 10 ⁶ /	1800	$x 10^3 =$	25 mm			1
	$(e_v/h)/($	$(e_{y}/h)/(e_{z}/b) =$		350) /	(40 /	300) =	0.54	> 0.2			
	$(e_z/b)/(e_z/b)$		and a second sec						_		
						Contractor of the second	ling	5	5.8.9(4)	
	$\lambda_y/\lambda_z =$	34.2/	27.7 =	1.2	< 2				=>	Check	
	$\lambda_z / \lambda_y =$	27.7/	34.2 =	0.8	< 2	-	-			biaxial	bending
				=> Igr	nore bia	xial bend	ling				
	REINF	ORCE	MENT	DESIG	N						
	Effectiv	e depth	d = h -	$C_{\text{nom}} - \phi_1$	_{ink} - 0.5	ø bar					
	h'=	350 -	30 -	6 -(0.5	x 25)	-	301.5	mm			
	b'=	300 -	30 -	6 -(0.5	x 25)	=	251.5	mm			

 10.11			.106 /	201.5		220	LNL		\$
M_z/h'	=	71.7	x10 /	301.5	=	238			
 M_y/b'	=	45.5	x10°/	251.5	=	181	kN		
M_z/h'	>	M_y/b'						 	
Use	==>	M'_z	$= M_z$	$+\beta(h'/l)$	b') My				1
		M'_{y}	$= M_y$	$+\beta(b'/$	$h') M_z$	_			
N/bhf	ck =	1800	$x10^{3}$ /	(300 x	350 x	25) =	0.69		
$\beta = 1$ -	N/bhf	$T_{ck} = 1$	- 0.69	= 0.31	≥ 0.3				
								57	
M'z	=	71.7 +	0.31 (302 /	252) x	45.5			
	=	88.8	kNm						
		0.51	20.		25/2	10			
 $d_2 = C +$					25/2 =	49	mm		
$d_2/h =$	49 /	350	= 0.14						
 N/bhf.	4 =	1800	$x 10^3 /$	(300 x	350 x	25) =	0.69		
M/bh ²	$f_{\rm ck} =$	88.8	x 10 ⁶ /	(300 x	350 ² x	25) =	0.10		
	s nation - n								

Design	Asfyk/	$bhf_{ck} =$	0.48						Use :	4H	H 25
Chart	$A_s =$	0.48	bhf ck /	fyk						2H	I 20
	=	0.48	(300 x	350 x	25)/	500				(259)	2 mm^2
	=	2520	mm ²							z I	
9.5.2(2)	Armin	$= 0.1N_{\rm H}$	alf. =	0.1NE4	/ (0.87)	(.t)			R	-	9
9.5.2(2)	=	0.1	x 1800	x 10 ³ /	(0.87 x	500)					
						$A_{\rm c} =$	210	mm ²	b		
9.5.2(3)	$A_{s,max}$	= 0.04	$A_{\rm c} =$	0.04	(300 x	350) =	4200	mm ²		z,	
9.5.3	Links.	$\phi_{\min} =$	0.25 x	(25) =	6.3	mm≥ 6	mm				
		Comment of the second	= the les	1.5.1							
		=		(20) =	400	mm			Ĩ.		Ĩ
		or	300	mm						F	
		or	400	mm		Use :	H8 -	300			
	At	section	350	mm bel	ow and	above be	am and	l			
	at	lapped jo	oints, S _v	_{max} =	0.6 x	300 =	180	mm			_
	1					Use :	H8 -	175			
										11	1

5.8.9(4)	CHEC	K BIA	XIAL E	BENDIN					
	Steel area,								
	All:	4H	25 +	2H	20	$A_{s} =$	2592	mm ²	
	<i>z-z</i> :				20				
	<i>y-y</i> :	4H	25 +	0H	20	A _{sy} =	1964	mm ²	
	d_{2z}/h	= 49	/ 350	=	0.14			1	
and the state	d_{2y}/b	= 49	/ 300	=	0.16				
	N/bhf	ck =	1800	x 10 ³ /	(300 x	350 x	25)		
		=	0.69	1					
	$A_{\rm sz}f_{\rm yk}/b$	$hf_{ck} =$	2592	x 500 /	(300 x	350 x	25) =	0.49	
			0.10						
		$M_{\rm Rdz} =$	0.10	x 300	$\times 350^2$	x 25			
		=	91.9	kNm					
	A syf yk/b	$hf_{ck} =$	1964	x 500 /	(350 x	300 x	25) =	0.37	
	M/b	$h^2 f_{\rm ck} =$	0.07		2				
		$M_{\rm Rdy} =$	0.07	x 350	x 300 ²	x 25			
		=	55.1	kNm					

	$N_{\rm Rd} =$	$0.567 f_{\rm c}$	$_{k}A_{c} +$	$0.87 f_{yk}A$	5						
	=	(0.567	x 25 x	300 x	350) +	(0.87 x	500 x	2592)			
	=	2616	kN								
	N _{Ed} /	$N_{\rm Rd} =$	1800 /	2616	=	0.69					
	NUT	<i>a</i> =	1.49								
5.8.9(2)	Imperfections need only be taken in one direction - where										
	they hav	ve the n	nost unfa	avourabk	e effect						
	$M_{\rm Edz}$	=	71.7	kNm							
	M _{Edy}	=	32.0	kNm	_						
	$(M_{\rm Edz}/N)$	$(I_{Rdz})^a$ -	- (M _{Edy}	$(M_{\rm RDy})^{\rm a}$	≤ 1.0						
	(71.7	/ 91.9)	1.49	+ (32.0	/ 55.1)	1.49					
	=		+								
	=	1.14	>	1.0					Fail		

	New ar	rangen	nent of	re infor	ement		_		Use :	4H	25
	Steel are	ea,								4H	20
1	All:	4H	25 +	4H	20	$A_{\rm s} =$	3221	mm ²		(3221	mm^2)
	<i>z-z</i> :	4H	25 +	2H						z	
			25 +		20	$A_{sy} =$	2592	mm ²	6	_ <u>i</u>	6
	1 11	10	1250		0.14					Т 	J
			/ 350				1			j	
	d_{2y}/b	= 49	/ 300	=	0.16						
	N/bhf	_{ck} =	1800	x 10 ³ /	(300 x	350 x	25)			z	
		=	0.69								
	A szf yk/b				(300 x	350 x	25) =	0.49			
			0.10			2022		1			
		$M_{\rm Rdz}$ =	0.10	x 300	x 350 ²	x 25					
		=	91.9	kNm					-		
	$A_{sy}f_{yk}/b$	$hf_{ck} =$	2592	x 500 /	(350 x	300 x	25) =	0.49			
			0.10								
			0.10		x 300 ²	x 25					
		=		kNm							

	$N_{\rm Rd} =$						-		
	=	(0.567	x 25 x	300 x	350) +	(0.87 x	500 x	3221)	
	=	2889	kN						
	N _{Ed} /	$N_{\rm Rd} =$	1800 /	2889	=	0.62			
		<i>a</i> =	1.44						
5.8.9(2)	Imperfe	ere							
	they have	ve the n	nost unfa	avourable					
			71.7						
	$M_{\rm Edy}$	=	32.0	kNm					
010090(00000000000000000000000000000000	$(M_{\rm Edz}/N)$	$(I_{Rdz})^a$ -	⊢ (M _{Edy}	$/M_{\rm RDy})^{\rm a}$	≤ 1.0				
	(71.7	/ 91.9)	1.44	+(32.0	/ 78.8)	1.44			
			+						
			<	1.0					Ok