

Semester 2 2017/2018

www.uthm.edu.my

FRAME ANALYSIS DUE TO WIND LOAD

By Dr. Zainorizuan Bin Mohd Jaini Department of Structural and Material Engineering

- Wind forces are variable loads which act directly on the internal and external surfaces of structures.
- The intensity of wind load on a structure is related to the square of the wind velocity and the dimension of the members that are resisting the wind.
- Wind velocity is dependent on:
 a) Geographical location
 b) The height of the structure
 - c) The topography of the area
 - d) The roughness of the terrain

Wind Loading

Local topography effect wind pattern, wind speed increase with altitude, decrease with terrain roughness

Contract of the second se

Shelter from any permanents will reduce loads

The response of a structure to the variable action of wind can be separated into 2 components:

Background component	Resonant component
 Involves static deflection of the structure under the wind pressure 	 Involve dynamic vibration of the structure in response to changes in wind pressure Relatively small and structural response to wind forces is usually treated using static method of analysis.
- Example: Natural wind	 Example: High-fluctuate wind, hurricane, micro-burst, windblast

Wind Loading

 Wind creates pressure of the windward side of a buildings and suction on three sides.

leeward wall

- Variation of wind pressure on multistory building.
 - Windward : Non-uniform wind pressure
 - Leeward : Uniform wind pressure
 - Sideward : Uniform wind pressure

Hurricane Sandy batters New York with howling winds

Building failure due to high pressure wind from Hurricane Katrina

Building damage due to high wind -Cardiff, Wales-

High-rise building Insulation peels away and collapses when the wind picks up. - China -

Windstorm (13/06/2013 – Menara UMNO) -Pulau Pinang, Malaysia-

Windstorm (13/10/2014 - Flat Jln Loke Yew) -Kuala Lumpur, Malaysia-

Major failure in uplift damage roof

Strong wind events in Malaysia

Site, State	Date	Time	Wind Speed	Station
Kuala Perlis , Perlis	8-Oct-08	8.00 pm.		Chuping
Sik, Kedah	28-Mar-09	Evening		Alor Setar Station
Alor Setar, Kedah	25-Mar-09	-	79.92km/hr	Alor Setar Station
Batu Lanchang, Penang	4-Apr-05	4.30 pm		Bayan Lepas
Sungai Dua, Penang	20-Jun-07	1.44 pm	79.636 km/hr	Bayan Lepas
Taiping, Perak	14-Aug-09	5.00 pm.		Hospital Taiping
Putra Jaya , Selangor	4-Apr-08	3.30 pm.		Subang
Kampung Malaysia Raya, Kuala Lumpur	28-Nov-09	4.15pm.	15.9 m/s	Subang
Seremban, Negeri Sembilan	1-Jan-10	5.30 am.		Hospital Seremban
Kota Melaka, Melaka	1-May-07	-		Melaka
Parit Jawa, Muar , Johor	21-Oct-09	1.45 am	48.6km/hr	Senai
Johor Bahru, Johor	19-Ju1-07	11.15 am.		Mersing
Rompin, Pahang	28-Sep-09	4.00pm.		Muadzam shah
Kota Bharu, Kelantan	2-Oct-09	-		Kota Bharu
Kota Bharu, Kelantan	22-Nov-09	-		Kota Bharu
Kota Bharu, Kelantan	30-Sep-09	3.30 pm.		Kota Bharu
Besut, Terengganu	24-Apr-09	5.00pm.	52.56km/hr	Kuala Terengganu Airport Station
Kuala Terengganu , Terengganu	21-Nov-09	Noon		Kuala Terengganu
Tawau, Sabah	24-Nov-07	-	50km/hr	Tawau
Lahad Datu, Sabah	19-May-09	Night		Tawau
Papar, Labuan	28-Sep	-	60km/hr	Labuan
Kapit, Sarawak	21-Jun-09	7.30 pm.		Kuching
Kuching, Sarawak	15-Aug-09	-	40.7km/hr	Kuching

Results Of Static Analysis Of Wind Load by SAP2000

- Three procedures are specified in MS 1553:2002, Malaysian Standard for the calculation of wind pressures in buildings:
 - 1) The simplified procedure:

Limited in application to building of rectangular in plan and not greater than 15 m high

2) The analytical procedure:

Limited to regular buildings that are not more than 200 m high and structure with roof spans less than 100 m

- 3) The wind tunnel procedure: Used for complex building
- 4) Simulation procedure Practical and for any types of building

Malaysia wind speed map

Beaufort No	Wind speed interval (m/s)	Type of wind	Effect at the turbine
0	0.00-0.39	Calm	No
1	0.40-1.79	Light air	No
2	1.80-3.49	Light Breeze	No
3	3.50-5.79	Gentle Breeze	Low
4	5.80-8.49	Moderate	Low
5	8.50-10.99	Breeze Fresh Breeze	High
6	11.00-13.99	Strong Breeze	High
7	14.00-16.99	Near Gale	Maximum
8	17.00-20.99	Gale	Stop
9	21.00-24.99	Strong Gale	Damage
10,11,12	25.0 >	Storm	Damage

Table 1: Wind speed description

• Wind speed analysis for 10, 30, 50 and 100 years return period

	10-return	30-return	50-return	100-return
Station	period	period	period	period
Chuping	12.63	15.36	16.63	18.35
Alor Setar	13.62	17.65	19.53	22.07
Kota Bharu Kuala	13.95	18.07	19.98	22.58
Terengganu	13.56	16.64	18.07	20.00
Bayan Lepas	13.85	16.26	17.38	18.90
Ipoh	14.37	19.18	21.41	24.44
Cameron	14.19	16.68	17.84	19.42
Kuantan	13.34	16.65	18.18	20.27
Subang	13.64	17.74	19.64	22.23
Mersing	14.13	17.9	19.65	22.04
Senai	13.23	16.25	17.66	19.56
Melaka	13.23	16.25	17.65	19.56

Simplified procedure (MS1553 Appendix A)

$$p = 0.613 (V_s)^2 (M_{z,cat})^2 (C_{pe} - C_{pi})$$

where:

P = The design wind pressure in Pa

 V_s = The basic wind speed (Figure A1)

 $M_{z,cat}$ = The terrain/height multiplier (Table A1)

 C_{pe}

- The external pressure coefficient for surface of enclose building (A2.3 and A2.4)
- C_{pi} = The internal pressure coefficient for surface of enclose building which shall be taken as +0.6 or -0.3. The two cases shall be considered to determinate the critical load requirements for the appropriate condition.

Analytical procedure(MS1553 Section 2)

$$\rho = 0.613 \left(V_{des} \right)^2 C_{fig} C_{dyn}$$

where:

- $V_{des} = V_{sit} / = \text{The design wind speed}$ / = Importance factor (Table 3.2) $V_{sit} = V_s M_d M_{z,cat} M_s M_h = \text{Site wind speed}$ $V_s = \text{Basic wind speed 33.5m/s for zone I and}$ 32.5m/s for zone 2 (refer Figure 3.1) $M_d = \text{Wind directional multiplier} = 1.0$ $M_{z,cat} = \text{Terrain/height multiplier (Table 4.1)}$
 - M_{s} = Shielding multiplier (Table 4.3) equal to 1.0 if the effects of shielding are ignored or not applicable.

 M_h = Hill shape multiplier. Shall be taken as 1.0 except that for particular cardinal direction in the local topographic zones.

 $C_{fig} = C_{pe} K_a K_c K_1 K_p$ = Aerodynamic shape factor for external pressure.

- C_{pe} = External pressure coefficient (Table 5.2.a and 5.2.b) for windward and leeward walls respectively for rectangular enclosed building
- $K_a K_c K_1 K_p$ = Area reduction factor, combination factor, local pressure factor and porous cladding reduction factor respectively. All shall be taken as 1.0 in most cases.
- C_{dyn} = Dynamic response factor. Shall be taken as 1.0 unless the structure is wind sensitive.

Wind tunnel procedure

Wind tunnel procedure

Wind tunnel test >> cladding pressure

Simulation procedure: Autodesk Robot

Simulation procedure: Computational Fluid Dynamics (CFD)

- Procedure:
 - 1. Calculate design wind load, $W_d = 1.2W_k$
 - 2. Calculate lateral point load at each level of frame
 - a) Assume contraflexure point at center of frame
 - b) Axial loads in column are in its proportion to distances from the centre of gravity of frame
 - c) All columns are equal cross-section area
 - 3. Lateral load analysis using Cantilever Method.
 - Calculate axial force in columns, then shear force in beams and columns from top to ground levels.
 - 4. Vertical load analysis due to wind, 1.2 G_k + 1.2 Q_k
 - analysis of one level sub-frame

The framing plans for a multistory building are shown in the figure below. The main dimensions structural features, loads, material, etc. are also set out as at the given data.

- Permanent office building (Design life = 50 years)
- Location: Near sub-urban (Zone 1)
- Topography: Flat area-slope<0.05 (Building around within 1 KM radius)
- Beam in grid line 1,2,3...12 : 250 x 600 mm ; Beam in grid line A, B, C & D : 250 x 500 mm
- Slab thickness = 150 mm ; Columns : 300 x 400 mm
- Imposed load : 4.0 kN/m² ;
- Finishes, ceiling, services etc. : 0.75 kN/m² ;
- Partitions : 0.5 kN/m²

For the multistory building:

- a) Calculate the wind load on the building
- b) Calculate the bending moments for all beams and columns, due to wind load
- c) Analyse the subframe consisting Beam 3/A-D, Level 1 with the column above and below then, subjected to vertical load only
- d) Sketch the bending moment diagrams for each loadings lateral and vertical, and the combined loadings

	Design	wind pr	essure							
	р	=	0.613 [$V_{\rm des}]^2 C$	fig C _{dyn}	Ра			2.8333	
								·····	 	
	$V_{\rm des}$	=	design	wind spe	eed	-				
		=	$V_{\rm sit} l$							
Table 3.2		<i>l</i> =	importa	nce fact	tor =	1.0				
		$V_{\rm sit} =$	$V_{\rm s}M_{\rm d}$	M _{z,cat} N	$M_{\rm s} M_{\rm h}$					
Fig. 3.1			$V_{\rm s} =$	basic w	ind spee	ed =	33.5	m/s	CQ	
2.2			$M_{\rm d} =$	wind di	rectional	l multipli	er =	1.00		
Table 4.1		-	$M_{z,cat} =$	terrain/	height m	ultiplier	=	1.00		
4.3.1			$M_{\rm s}$ –	shieldin	g multipl	lier =		1.00		
4.4			$M_{\rm h} =$	hill shap	e multip	olier =		1.00		
		$V_{\rm sit} =$	33.5	x 1.00	x 1.00	x 1.00	x 1.00			
			33.50	m/s						
		$V_{\text{des}} =$	33.50	x 1.0 =	33.50	m/s				
-										
t.	C fig.	_	aerodyı	namic sh	nape fact	tor				
<u>.</u>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	_	$C_{p,e} K_a$	$K_{\rm c}K_{\rm l}K_{\rm r}$, for ex	ternal pr	essure			
Table 5.2(a)		$C_{p,e} =$	externa	l pressu	re coeffi	icient =				
Table 5.2(b)			: winc	lward w	vall =	0.70				
		-	: leew	vard wal	11 =	-0.25				

5.4.2	K_{a} =	area reduction	factor =			1.00		
5.4.3	K_{c} =	 combination fa 	ctor =			1.00		
5.4.4	$K_l =$	local pressure	factor =			1.00		
5.4.5	$K_{\rm p}$ =	= porous claddin	g reduction	n facto	or =	1.00		
6.1	C_{fig}	= (0.700.25)	x 1.00	x 1.00				
		= = 0.95		-				
	C _{dyn} =	dynamic respon	nse factor		1.00			
	Design wind p	pressure	WW000 00000000000000000000000000000000					
	<i>p</i> =	0.613 x 33.5	x 0.95 x	1.00				
		653.54 N/m ²		0.654	kN/m ²			
					4m			
	Characteristic	wind load for	K		·5m			
	each sub-fran	ne,			Ý			
	= ().65 x [(4+5)/2]					
	= 2.9	4 kN/m height						
				Y				
			L	K.		-		
					~			

Characteristic v	wind load	$I, W_k =$	=	2.94	kN/m	height		
Design wind lo	ad, $W_{\rm d}$ =	1.20	$W_{\mathbf{k}} =$	3.53	kN/m	height		
							-	
 Point load for e	ach flooi	<u>r level :</u>						
 Roof level :	3.5	(1.00 +	1.75)	=	9.70	kN		
Level 2 - 6 :	3.5	(1.75 +	1.75)	=	12.35	kN		
 Level 1 :	3.5	(1.75 +	2.00)	=	13.23	kN		
 Centre of gravi	ty of the	structur	e,					
 x = (6.0N)	+ 12N	+ 18N)	/4 N	=	9	m		
Column :		A :	в:	C :	D			
Distance from	centroid:	9.00 :	3.00 :	3.00 :	9.00			
Column axial lo	ad:	3.0P:	1.0P:	1.0P:	3.0P:			

	9.7			1	0.1	* Assumptions,
						1.Point of contraflexure
	К			3	3.5	are located at the
	12.3					mid-points of all
	- 1				···	columns and beams.
	L			3	3.5	2. The direct axial loads
	12.3					in the columns are in
	1					propotion to their
	м			3	3.5	distances from the
	12.3					centre of gravity of
						the frame.
	N				3.5	3. All the column in a
	12.3					storey are of equal
					1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940	cross-sectional area.
	P 🛉				3.5	
	12.3	•				
			Anno in in An An Anno ann an Anno an Anno an An Anno an An Anno an An Anno			
	Q †			• 3	3.5	
	_13.2	······································	1 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1			
			www.www.www.www.	5 - 20 - 100		
	R 🖣			4	4.0	
-			<u> </u>			
	A	6 т в	6 m C	6 m D		
		x		1	• •	
		•				

I	level F	🕻 and a	bove								
						м					
9	.7										
								1.75m			
	K	$-H_1$		H_2	4	H_3	2	H_4			
	Y	6	m	6	m	6	m				
	3.0P		1.0P		1.0P		3.0P				
<u> </u>	Axial fo	rce in co	olumns,								
Σ	С М @	K = 0									
	(9.7 x	1.75) +	(1.0P	x 6.0)	- (1.0P	x 12.0)			3.0P =	0.85	kN
	-(3.0P	x 18.0)	=	0					1.0P =	0.28	kN
	60.0P		17.0	kN			1.		1.0P =	0.28	kN
	P =	17.0 /	60.0 =	0.28	kN				3.0P =	0.85	kN
	anderson enter en san enter										

	Shear fo	orce in b	eams ai	nd colum	<u>nns,</u>						
			F_1		F_2		F_3				
										1	
								1.75m			
	. K .	H_{1}		H_2		H_3		H_4		,	
		6	m	6	m	6	m				
· · · · · · · · · · · · · · · · · · ·	0.85	kN	0.28	kN	0.28	kN	0.85	kN			
			, , , , , , , , , , , , , , , , , , ,				5				
	Conside	er sub-fr	ame to t	he left o	of F_1 :						
	$\Sigma F_v =$	0:	F_1 -	0.85	= 0				$F_1 =$	0.85	kN
	$\Sigma M@$	$F_1 = 0:$	$(H_1 \mathbf{x})$	1.75) -	(0.85 x	3.00) =	0		$H_1 =$	1.46	kN
	Conside	er sub-fr	ame to t	he left o	of F_2 :						
n en	$\Sigma F_{v} =$	• 0 :	F_2 -	0.85	- 0.28	= 0			$F_2 =$	1.13	kN
	Σ Μ@.	$F_2 = 0$:	(H ₁ -	$+H_2$) x	1.75 -	(0.85	x 9.0)		$H_2 =$	3.40	kN
				(0.28	x 3.0)	= 0					
	Conside	er sub-fr	ame to t	he left o	of F_3 :						
	$\Sigma F_{\mathbf{v}} =$	= 0 :	F 3 -	0.85	- 0.28	+ 0.28	= 0		$F_{3} =$	0.85	kN
	$\Sigma M@$	$F_2 = 0$:	$(H_1 + H_1)$	$H_2 + H_3$	1.75 -	(0.85 x	15.00)		$H_3 =$	3.40	kN
			- (0.28	x 9.0)	+ (0.28	x 3.0)	= 0				
	$\Sigma F_{\rm H}$ =	= 0 :	9.7	- H ₁ - I	H ₂ - H ₃	$-H_4 = 0$)		$H_4 =$	1.46	kN

L	evel I	and al	bove	*******							
	9.7 📘										-
				14 C (1) 14 C (1)				3.5m			
]	12.3										
								1.75m			
		H_1		H_2		H_3		H_4			
	Y	6	m	6	m	6	m				
	3.0P		1.0P		1.0P		3.0P				1.
A	xial fo	rce in c	olumns,			5. m					
Σ	М @	L = 0									
	9.7 x	5.25) +	(12.3 x	1.75) +	(1.0P	x 6.0)			3.0P =	3.63	kN
- ((1.0P	x 12.0)	-(3.0P	x 18.0)	_	0			1.0P =	1.21	kN
6	0.0P		72.5	kN					1.0P =	1.21	kN
	P =	72.5 /	60.0 =	1.21	kN				3.0P =	3.63	kN

Shear	0.85 kN	0.28 kN	0.28	kN	0.85	kN			
force in				ч.					
beams	1.46 <i>F</i> ₁	3.40 F ₂	3.40	F_3	1.46				
and						1.75			
columns						<u>↓1.7</u> 5			
	H_1	H_2		H_3		H_4			-
	♦ 6	m 6	m	6	m				
	3.63 kN	1.21 kN	1.21	kN	3.63	kN	17/1/14/17		
	Consider sub-fi	ame to the left of	of F_1 :						
	$\Sigma F_{v} = 0$:	$F_1 - 3.63$	+ 0.85	= 0			$F_1 =$	2.78	kN
	$\Sigma M@F_1 = 0:$	$(H_1 + 1.46) x$	1.75 -	(2.78 x	3.00) =	0	$H_1 =$	3.31	kN
	. Consider sub-fi	ame to the left of	of F_2 :						
	$\Sigma F_{v} = 0$:	$F_2 - 2.78$	- 0.93	= 0			$F_{2} =$	3.70	kN
***************************************	$\Sigma M@F_2 = 0$	$(H_1 + H_2) \mathbf{x}$	1.75 +	(4.85 x	1.75)		$H_2 =$	7.72	kN
		- (2.78 x 9.0)	- (0.93	x 3.0)	= 0				
	Consider sub-fi	ame to the left of	of F_3 :						
	$\Sigma F_{\rm v} = 0$:	<i>F</i> ₃ - 2.78	- 0.93	+ 0.93	= 0		$F_3 =$	2.78	kN
***************************************	$\Sigma M@F_2 = 0$	$(H_1 + H_2 + H_3)$	1.75 +	(8.25	x 1.75)		$H_3 =$	7.72	kN
	- (2.78 x	15.00) - (0.93	x 9.0)	+ (0.93	x 3.0)	= 0			

	$\Sigma F_{\rm H} = 0$:	22.1 - <i>H</i> ₁ -	H ₂ - H ₃	$-H_4 = 0$)		$H_4 =$	3.31	kN

	Level	M and a	above		-						
	9.7		22010111111111111111111111111111111111								
	12.3	_						3.5m			
	12.3							3.5m	-		
								1.75m			
	M	H_1		H_2	-	H_3	2	H_4			
	and the state of the	6	m	6	m	6	m				
	3.0P		1.0P		1.0P		3.0P				
		l.									
2	Axial fo	orce in c	olumns,	-							
	$\Sigma M @$	0 M = 0									
	(9.7 x	8.75) +	(12.3 x	5.25) +	(12.3 x	1.75) +			3.0P =	8.57	kN
	(1.0P	x 6.0)	- (1.0P	x 12.0)	-(3.0P	x 18.0)	=	0	1.0P =	2.86	kN
	60.0P	=	171.3	kN					1.0P =	2.86	kN
	P =	171.3 /	60.0 =	2.86	kN				3.0P =	8.57	kN

	3.63 kN	I	1.21	kN	1.21	kN	3.63	kN				
	A			h - 11								
	3.31	F_1	7.72	F_2	7.72	F ₃	3.31					
		T]				1.75				
								1.75				pone the commentation of the
	••	\overline{H}_1	-	$-H_2$		H_3		H_4			1	
	¥	6 1	m	6	m	6	m					
	8.57 kN	ſ	2.86	kN	2.86	kN	8.57	kN				111 / 00 10 / 00 10 / 00 10 / 00 10 / 00 / 00 / 00 / 00 / 00 / 00 / 00 / 00 / 00 / 00 / 00 / 00 / 00 / 00 / 00
	Consider s	ub-fra	me to t	he left o	of F_1 :							
	$\Sigma F_{\rm v} = 0$:	F_1 -	8.57	+ 3.63	= 0			F_1	=	4.94	kN
	$\Sigma M@F_1$	= 0:	(<i>H</i> ₁ +	3.31) x	1.75 -	(4.94 x	3.00) =	0	${H}_1$	=	5.16	kN
•	Consider s	ub-fra	me to t	he left o	of F_2 :					and the second		
	$\Sigma F_{\rm v} = 0$:	F_2 -	4.94	- 1.65	= 0			F_2	=	6.59	kN
	$\Sigma M@F_2$	= 0 :	(H ₁ -	H_2) x	1.75 +	(11.03	x 1.75)		H_2	=	12.04	kN
			- (4.94	x 9.0)	- (1.65	x 3.0)	= 0			-		
	Consider s	ub-fra	me to t	he left o	of F_3 :							
	$\Sigma F_{\rm v} = 0$:	F 3 -	4.94	- 1.65	+ 1.65	= 0		F_3	=	4.94	kN
	$\Sigma M@F_2$	= 0 : ($(H_1 + H_2)$	$(I_2 + H_3)$	1.75 +	(18.74	x 1.75)		H_3	=	12.04	kN
	- (4.	.94 x	15.00)	- (1.65	x 9.0)	+ (1.65	x 3.0)	= 0				
		ammarreadur	controntennen and	aaroon7comroomoon								
	$\Sigma F_{\rm H} = 0$		34.4	- H ₁ - I	$H_2 - H_3$	$-H_4 = 0$)		H_4	-	5.16	kN

I	LevelI	N and a	bove								
	9.7										
	12.3							3.5m		· .	
	12.3							3.5m			
	12.3							3.5m			
								<u>1.75</u> m			
	N	H_1		H_2		H_3	2	H_4			
		6	m	6	m	6	m				
	3.0P		1.0P		1.0P		3.0P				
Ĭ	Axial fo	orce in c	olumns,						0.000		
Σ	Е М @	M = 0									
	(9.7 x	12.3)+	(12.3 x	8.75) +	(12.3 x	5.25) +	(12.3 x	1.75) +	3.0P =	15.67	kN
	(1.0P	x 6.0)	- (1.0P	x 12.0)	-(3.0P	x 18.0)	=	0	1.0P =	5.22	kN
	60.0P		313.3	kN					1.0P =	5.22	kN
	P =	313.3 /	60.0 =	5.22	kN				3.0P =	15.67	kN

		8.57	kN	2.86	kN	2.86	kN	8.57	kN			
					k							
an manga dalam (finana na fina) na har bar ta		5.16	F_{1}	12.04	F_2	12.04	F ₃	5.16				
		P			' I				1.75			
									1.75			
			H_1		H_2		H_3		H_4			
			6	m	6	m	6	m				
		15.67	kN	5.22	kN	5.22	kN	15.67	kN			
		Conside	er sub-fra	ame to t	he left c	of F_1 :						
		$\Sigma F_{\rm v} =$	• 0 :	F 1 -	15.67	+8.57	= 0			$F_1 =$	= 7.10	kN
		$\Sigma M@$	$F_1 = 0:$	(<i>H</i> ₁ +	5.16) x	1.75 -	(7.10 x	3.00) =	0	$H_1 =$	- 7.01	kN
		Conside	er sub-fr	ame to t	he left c	of F_2 :						
		$\Sigma F_{v} =$	• 0 :	F_2 -	7.10	- 2.37	= 0			$F_2 =$	= 9.47	kN
		Σ Μ@	$F_2 = 0:$	$(H_1 -$	$+H_2$) x	1.75 +	(17.20	x 1.75)		$H_2 =$	= 16.36	kN
				- (7.10	x 9.0)	- (2.37	x 3.0)	= 0				
	January 1990	Conside	er sub-fr	ame to t	he left c	of F_3 :						
		$\Sigma F_{\rm v} =$	• 0 :	F 3 -	7.10	- 2.37	+ 2.37	= 0		$F_3 =$	= 7.10	kN
		Σ M@	$F_2 = 0$:	$(H_1 + H_1)$	$H_2 + H_3$	1.75 +	(29.24	x 1.75)		$H_{3} =$	= 16.36	kN
		-	(7.10 x	15.00)	- (2.37	x 9.0)	+ (2.37	x 3.0)	= 0			
					-							
		$\Sigma F_{\rm H} =$	= 0 :	46.7	- H ₁ - I	$H_2 - H_3$	- H ₄ = ()		$H_4 =$	- 7.01	kN

Level I	P and ab	ove								
9.7										
12.3							3.5m			
12.3							3.5m			
12.3							3.5m			
12.3	and the second						3.5m			
							<u>1.75</u> m			
. P	H_1		H_2	2	H_3	2	H_4			
	6	m	6	m	6	m				
3.0P		1.0P		1.0P		3.0P				
Axial fo	orce in co	olumns,						10 (10 (10 (10 (10 (10 (10 (10 (
Σ Μ @	$\mathbf{P} = 0$									
(9.7 x	15.8)+	(12.3 x	12.3)+	(12.3 x	8.75) +	(12.3 x	5.25) +	3.0P =	24.9	kN
(12.3 x	1.75)+	(1.0P	x 6.0)	- (1.0P	x 12.0)	-(3.0P	x 18.0)	1.0P =	8.3	kN
	0							1.0P =	8.3	kN
60.0P		498.6	kN					3.0P =	24.9	kN
P =	498.6 /	60.0 =	8.31	kN						

15.67	kN	5.22	kN	5.22	kN	15.67	kN				
7.01	<i>F</i> ₁	16.36	F ₂	16.36	F ₃	7.01	1 75				•
				L	Ċ		<u>1.75</u>				
	H_1		H_2		H_3		H_4	2. 			
	6	m	6	m	6	m				- 	112000112200020000000000000000
24.93	kN	8.31	kN	8.31	kN	24.93	kN				****
Conside	er sub-fr	ame to t	he left c	fF_1 :							
$\sum F_{v} =$	• 0 :	F_1 -	24.93	+15.67	= 0			F_{1}		9.3	kN
Σ Μ@	$F_1 = 0:$	(<i>H</i> ₁ +	7.01) x	1.75 -	(9.3x	3.00) =	0	H_{1}		8.9	kN
· Conside	er sub-fr	ame to t	he left c	of F_2 :							
$\Sigma F_{\rm v} =$	= 0 :	F 2 -	9.26	- 3.09	= 0			F_2	=	12.3	kN
$\Sigma M@$	$F_2 = 0$:	$(H_1 -$	$+H_2$) x	1.75 +	(23.37	x 1.75)		H_2	=	20.7	kN
		- (9.3	x 9.0)	- (3.09	x 3.0)	= 0		*****			
Conside	er sub-fr	ame to t	he left c	of F_3 :							
$\Sigma F_{v} =$	• 0 :	F3 -	9.26	- 3.09	+ 3.09	= 0		F_3	=	9.3	kN
Σ M@.	$F_2 = 0$:	$(H_1 + H_1)$	$H_2 + H_3$	1.75 +	(39.73	x 1.75)		H_3	=	20.7	kN
	(9.3 x	15.00)	- (3.09	x 9.0)	+ (3.09	x 3.0)	= 0				
$\Sigma F_{\rm H}$ =	= 0 :	59.1	- H ₁ - I	H ₂ - H ₃	$-H_4 = 0$)		H_4	=	8.9	kN

Level (Q and a	bove								
9.7										-
12.3							3.5m			
12.3					the second of		3.5m	.,		
12.3							3.5m			
12.3				· .			3.5m			
12.3							3.5m			and the second
							1.75m		****	and a grad and a strend strend strend strends and a
× I	H_1		H_2		H_3		H_4			
	6	m	6	m	6	m				
3.0P		1.0P		1.0P		3.0P			anglang a manana katala da katala da da katala da	**************************************
Axial fo	rce in c	<u>olumns,</u>								****
$\Sigma M @$	P = 0									
(9.7 x	19.3)+	(12.3 x	15.8)+	(12.3 x	12.3) +	(12.3 x	8.75) +	3.0P =	36.3	kN
(12.3 x	5.25)+	(12.3 x	1.75)+	(1.0P	x 6.0)	- (1.0P	x 12.0)	1.0P =	12.1	kN
-(3.0P	x 18.0)	-	0					1.0P =	12.1	kN
60.0P	_	727.0	kN			- 		3.0P =	36.3	kN
P =	727.0 /	60.0 =	12.12	kN						

 24.9	kN	8.3	kN	8.3	kN	24.9	kN				
	a harden and a second a	4									
8.9	F_1	20.7	F_2	20.7	F ₃ ▲	8.9	L				
							1.75				
							1.75				
	H_1		H_2		H_3		H_4				
	, 6	m	6	m	6	m					
36.3	kN	12.1	kN	12.1	kN	36.3	kN				
Conside	er sub-fra	ame to t	he left o	of F_1 :							
$\Sigma F_{v} =$	• 0 :	<i>F</i> ₁ -	36.35	+24.93	= 0			F_1	=	11.4	kN
Σ M@.	$F_1 = 0:$	(<i>H</i> ₁ +	8.9) x	1.75 -	(11.4x	3.00) =	0	H_1	=	10.7	kN
Conside	er sub-fra	ame to t	he left o	of F_2 :							
$\Sigma F_{\rm v} =$	• 0 :	F_2 -	11.42	- 3.81	= 0			F_2	_	15.2	kN
$\Sigma M@.$	$F_2 = 0:$	(H ₁ -	$+H_2$) x	1.75 +	(29.55	x 1.75)		H_2	=	25.0	kN
		- (11.4	x 9.0)	- (3.81	x 3.0)	= 0					
 Conside	er sub-fr	ame to t	he left c	of F_3 :							
 $\Sigma F_{v} =$	• 0 :	F 3 -	11.42	- 3.81	+ 3.81	= 0		F_3	-	11.4	kN
Σ <i>M@</i> .	$F_2 = 0:$	$(H_1 + H_1)$	$H_2 + H_3)$	1.75 +	(50.23	x 1.75)		H_3	=	25.0	kN
 -	(11.4 x	15.00)	- (3.81	x 9.0)	+ (3.81	x 3.0)	= 0				
 $\Sigma F_{\rm H} =$	= 0 :	71.4	- H ₁ - I	$H_2 - H_3$	$-H_4 = ($)		H_4	-	10.7	kN

Level	R and a	bove						-		
9.7										
12.3							3.5m			
12.3							3.5m			
12.3				-			3.5m			
12.3							3.5m	AAAAAA WAXAAAAAAAAAAAAAAAAAAAAAAAAAAAAA		
12.3							3.5m			-
13.2							3.5m			
P							<u>2.0m</u>			
ĸ	H_1		H_2	2	H_3		H_4			
	6	m	6	m	6	m			y agan ang mana ang akanan ang mang mang mang mang mang mang m	
3.0P		1.0P		1.0P		3.0P				
<u>Axial fo</u>	orce in c	olumns,								
$\Sigma M @$	P = 0									u curati a se
(9.7 x	23.0)+	(12.3 x	19.5)+	(12.3 x	16.0) +	(12.3 x	12.5) +	3.0P =	51.1	kN
(12.3 x	9.00)+	(12.3 x	5.50)+	(13.2 x	2.00)+	(1.0P	x 6.0)	1.0P =	17.0	kN
- (1.0P	x 12.0)	-(3.0P	x 18.0)	=	0			1.0P =	17.0	kN
60.0P	=	1021.4	kN					3.0P =	51.1	kN
P =	1021 /	60.0 =	17.02	kN						

36.3	kN	12.1	kN	12.1	kN	36.3	kN			
							· · · · · · · · · · · · · · · · · · ·			
10.7	F_1	25.0	F_2	25.0	$F_3 \downarrow$	10.7	5			
]				1.75			
					L		2.00	a han a sheka an sheka a sheka ka sheka		
ſ	$-H_1$		H_2		H_3		H_4			
•	· 6	m	6	m	6	m				
51.1	kN	17.0	kN	17.0	kN	51.1	kN			
Conside	r sub-fra	ame to t	he left c	of F_1 :						
$\Sigma F_{v} =$	0:	F_1 -	51.07	+36.35	= 0			$F_1 =$	= 14.7	kN
$\Sigma M@I$	$r_1 = 0$:	$(H_1\mathbf{x}$	2.00) +	(10.7 x	1.75) -	(14.7x	3.0)=0	$H_1 =$	= 12.7	kN
Conside	r sub-fra	ame to t	he left c	of F_2 :						
$\Sigma F_{\mathbf{v}} =$	0:	F ₂ -	14.72	- 4.91	= 0			F_2 =	= 19.6	kN
Σ M@I	$F_2 = 0$:	(H ₁ -	+ H ₂) x	2.00 +	(35.72	x 1.75)		$H_2 =$	= 29.6	kN
		- (14.7	x 9.0)	- (4.91	x 3.0)	= 0				
Conside	r sub-fra	ame to t	he left c	of F_3 :						
$\Sigma F_{\mathbf{v}} =$	0:	F 3 -	14.72	- 4.91	+ 4.91	= 0		F_3 =	= 14.7	kN
Σ Μ@Ι	$F_2 = 0:$	$(H_1 + H_1)$	$H_2 + H_3)$	2.00 +	(60.73	x 1.75)		$H_3 =$	= 29.6	kN
-	(14.7 x	15.00)	- (4.91	x 9.0)	+ (4.91	x 3.0)	= 0			
$\Sigma F_{\rm H} =$	0 :	84.7	- H ₁ - J	H ₂ - H ₃	$-H_4 = 0$)		H_4 =	= 12.7	kN

	2.5 2	5 5.9	34 5.9	2.5 2.5	
2.5	3	.4	2.5		
			/		
2.5	5.8 8	13.5	13.5	8.3 5.8	
	8.3 5	.9 11.1	5.9 8.3	2.5	
		V	/		
		1			
5.8	9.0 14	\$ 21.1	<u>19.</u> # 21.1	14.8 9.0	
	14.8 13	.5 19.8	13.5 14.8	5.8	
		V			
		Λ	Λ		
9.0	12.3	28.6	28 28.6	21 12.3	
	21.3 21	.1 28.4	21.1 21.3	9.0	
	/		V	V	
		1	1	Λ	
	15.5 27	8 36.2	370 36.2	278 15.5	
12.3	27.8 28	.6 37.0	28.6 27.8	12.3	
	/	V	V	V	
		Λ	Λ	1	
	18.8 34	3 43.8	43.8	343 18.8	
15.5	34.3 36	.2 45.7	36.2 31.3	15.5	
				Y	
			Λ		
	25.4	2 59.3	-58.9 59.3	1.2 25.4	Eirct Eloor
18.8	144.2 43	.8 58.9	43.8 44.2	18.8	
	[/	7	7		
	Y i	1 I	X	X	
25.4	59	.3	59.3	25.4	

(Case 1 : All spa	ans desig	n permane	nt & var	iable lo	ads 1.2	$2G_{k} + 1.2$	<i>Q</i> k		
	•••••						Fixed en	d mome	ent :	
	10011101010000000000000000000000000000	**************************		1			$-M_{AB} =$	$M_{\rm BA} =$	$w_1L_1^2$	²/12
	46.4	kN/m	43.9 kN/m	46.4	kN/m	3.5m	=	46.4	x 6.0	² /12
							=	139.1	kNm	
					_		$-M_{\rm BC} =$	$M_{\rm CB} =$	$w_2L_2^2$	² /12
						4.0m	=	43.9	x 6.0	$^{2}/12$
	6.0 1	m	6.0 m	6.0	m		=	131.6	kNm	
	A	В		С	-	D	$-M_{\rm CD} =$	$M_{\rm DC} =$	$\mathbf{w}_1 L_1^2$	² /12
į							=	46.4	x 6.0	² /12
							=	139.1	kNm	

-

Example

41.67			-9.48			9.48			-41.67
0.25			-0.42			0.42			-0.25
1.52			-1.09			1.09			-1.52
0.34			-6.52			6.52			-0.34
39.56	· · · ·		-1.45			1.45			-39.56
0.28	Α	В	0.19		С	0.19		D	0.28
0.25	0.47	0.32	0.17	0.32	0.32	0.17	0.32	0.47	0.25
	-139.1	139.1		-131.6	 131.6		-139.1	139.1	
34.6	64.9	-2.4	-1.3	-2.4	2.4	1.3	2.4	-64.9	-34.6
	-1.2	32.5		1.2	-1.2		-32.5	1.2	
0.3	0.6	-10.7	-5.7	-10.7	 10.7	5.7	10.7	-0.6	-0.3
2	-5.4	0.3		5.4	-5.4		-0.3	5.4	
1.3	2.5	-1.8	-1.0	-1.8	1.8	1.0	1.8	-2.5	-1.3
	-0.9	1.2		0.9	-0.9		-1.2	0.9	
0.2	0.4	-0.7	-0.4	-0.7	0.7	0.4	0.7	-0.4	-0.2
36.5	-78.1	157.5	-8.3	-139.7	139.7	8.3	-157.5	 78.1	-36.5

Shear f	orce :							-		
	78.1 🛓	46.4	157.5 🛪	139.7	43.9	139.7	157.5r	46.4	78.1	
					1		17			
	1	6.0	`		6.0			6.0		*****
	V _{AB}		V _{BA}	$V_{\rm BC}$		V _{CB}	V _{CD}		V _{DC}	
							-			
$\Sigma M @$	$\mathbf{B} = 0$	0		:				oaneen in the second		
6.0	$V_{\rm AB}$ -	(46.4	x 6.0 x	3.0) +	157.5	- 78.1	= 0			
 V _{AB}	= (834.46	- 157.5	+78.1) / 6.0	-	125.8	kN		Distantis antina antina
V _{BA}	= (46.4 x	6.0) -	125.8		=	152.3	kN		
	, 1389997787 - Concellant of Concerns									27777777777777777777777777777777777777
 ΣM (a)	$\mathbf{C} = 0$	0								
 6.0	$V_{\rm BC}$ -	(43.9	x 6.0 x	3.0) +	139.7	- 139.7	= 0			
 V _{BC}	= (789.75	- 139.7	+139.7) / 6.0		131.6	kN		
V _{CB}	= (43.9 x	6.0) -	131.6			131.6	kN		
 $\Sigma M (a)$) D =	0								
 6.0	$V_{\rm CD}$ -	(46.4	x 6.0 x	3.0) -	157.5	+ 78.1	= 0			
 V _{CD}	= (834.46	+157.5	- 78.1) / 6.0		152.3	kN		
 V _{DC}	= (46.4 x	6.0) -	152.3			125.8	kN		
DC	······									2

Combination of vertical and wind load							$1.2 (G_k + Q_k + W_k)$				
				7			7			7	
			201.7			198.6/				/	
	34.0			80.9			113.4		122.3		
	22.9		//	\mathbf{N}			\backslash		Λ		
11.1			53.2	626		53.2	67.6		\$0.4	61.9	
				$ $ \setminus			/			/	
					57.7			\searrow			
		96.9		14 - 14 - 14 - 14 - 14 - 14 - 14 - 14 -				88.5			
7.2			63.4		-	63.4			43.6	ь. -	