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Chapter 1 
 

Stress and Strain 
 
 

 

 

 

 

 

 

 

 

 

 

 
 

.  
 
 

1.0 Types and system of force  
  

(i) Normal force 
In geometry the word "normal" means perpendicular. Therefore, normal 
force  can be defined as a force perpendicular to the plane or surface 
where an object is resting or moving. The force may be acting as a 
tension force (pull) or compression force (push). The SI unit is newton or 
N 
 

    
(ii) Shear force   

Shear force can be defined as a force that attempts to cause the 
internal structure of a material to slide against itself.  The force acting in 

Tension 

Compression 

Figure 1.1: Tension and compression force 

After successfully completing this chapter the student should be able to: 
 

 defined the relationship between stress and strain 

 analyse the stress and strain using related equations 

 determine and analyse the deformation of a rod of uniform or variable cross 
section under one or several load 

 determine the principal stress using equation and Mohr’s circle method  

This chapter will discuss about the concept of stresses and strain created in various 
members and connection by the loads applied to a structure. The students also will 
learn an important aspect of the analysis and design of structures relates to the 
deformation caused by the loads applied to the structures. The mechanical 
properties of the selected materials also will be discussed with simple stress-strain 
diagram for a specific material 
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a direction parallel to a surface of a body. Shear force also often result 
in shear strain. The SI unit of torque is Newton or N. 
 

 

 

 

 

 

 

 

Figure 1.2: Shear force 

 

 

(iii) Torque or Torsion 
Torque is the tendency of a force to rotate an object about an axis. A 
torque can be though of as a twist ato an object. Mathematically, torque 
is defined as the product of force and the lever-arm distance, which 
tends to produce rotation. Torque is calculated by multiplying force and 
distance. The SI units of torque are Newton-meter or Nm.  

 
 

1.1 Stress 
Stress is defined as force per unit area. It has the same units as pressure, and in 
fact pressure is one special variety of stress. However, stress is a much more 
complex quantity than pressure because it varies both with direction and with the 
surface it acts on. Basically stress can be divided into three types: 
 

(i) normal stress 
(ii) bearing stress 
(iii) shear stress 

 
1.1.1 Normal stress 
Normal stress is a stress that acts perpendicular to a surface. It is can be 
considered if the applied force is perpendicular to the plane of the cross sectional 
area under consideration. It is also can be either compression or tension. 
Compression stress is considered as a stress that causes an object shortening. 
Meanwhile tension stress is a stress that acts to lengthen an object. The stress in 
an axially loaded bar is: 

 
 

 

Stress is positive in tension (P>0 means σ>0), and negative in compression 
(P<0). English units: psi (pounds per square inch), or ksi (kilopounds per square 
inch). S.I. units: Pa (Pascal, N/m2), or usually MPa (megapascal, 1 Mpa = 
1,000,000 Pa).  

A

P
  

Glue 

F 
F 

http://en.wikipedia.org/wiki/Force


STRESS AND STRAIN 

 3 

 

 

 

 

 

Figure 1.3: Normal stress in tension and compression 
 
 

Example 1.1 
A hollow steel tube with an inside diameter of 100 mm must carry a tensile load 
of 400 kN. Determine the outside diameter of the tube if the stress is limited to 
120 MN/m2. 

 
Solution 

Given: 

P = 400 kN = 400 000 N 
 σ = 120 MPa 

A= ¼ πD2 – ¼ π(1002) 

A = ¼ π (D2 – 10 000) 

Thus, 

400 000 = 120 [¼ π (D2 – 10 000)] 
400 000 = 30πD2 – 30 000π 





30

3000004000002 
D  

D = 119.35 mm         answer 
 
 

 
 
 
 
 
 
 
 

Bar in tension 

Bar in compression 

D 100 

400 kN 
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Example 1.2 
A homogeneous 800 kg bar AB is supported at either end by a cable as shown in 
Figure E1.2. Calculate the smallest area of each cable if the stress is not to 
exceed 90 MPa in bronze and 120 MPa in steel. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Solution 
 
By symmetry:  
Pbr = Pst = ½ (7848) 
 
Pbr = Pst = 3924 N 
 
For bronze cable: 
 
Pbr = σbrAbr 
 
3924 = 90 Abr 

 
Abr  = 43.6 
mm2             answer 
  

For steel cable: 

Pst = σstAst 

3924 = 120Ast 

Ast = 32.7 mm2             answer 

 

Pbr Pst 

W = 800 kg 

     = 7484 N 

5 m 5 m 

A B 

10 m 

Bronze 

L = 4 

m Steel 

L = 3 

m 

A  B 

Figure E1.2 
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Example 1.3 
An aluminum rod is rigidly attached between a steel rod and a bronze rod as 
shown in Figure E1.3. Axial loads are applied at the positions indicated. Find the 
maximum value of P that will not exceed a stress in steel of 140 MPa, in 
aluminum of 90 MPa, or in bronze of 100 MPa. 
  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Solution 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: The all loads are under compression (-ve) 

 

 

Steel 
A = 500 mm2 Aluminium 

A = 400 mm2 

1.5 m 

Bronze 
A = 200 mm2 

2.0 m 2.5 m 

2P 4P 
 P 

Figure E1.3 

A  
B 

C 

2P 4P 
 P 

D 

2P P1 = 2P 

2P 
 P 

 P2 = P 

2P 
 P 

 4P 
P3 = 5P 
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Expressing that each of the free bodies is in equilibrium, therefore 
 
P1 =  - 2P  
P2 =  - P 
P3 =  - 5P 
 
For bronze:  
 
 σbrAbr  = 2P 
 
100(200) = 2P 
 
P = 10 000 N 
 
For aluminum: 

σalAal  = P 
 

90(400) = P 

P = 36 000 N 

For Steel: 

σstAst  = 5P 

140 (500) = 5P 

 P = 14 000 N 
  

For safe value of P, use the smallest above. Thus,  

P = 10 000 N = 10 kN          answer 
 
 

1.1.2 Shear stress 
Shear stress is a stress that acts parallel to a surface. It can cause one object to slide over 
another. It also tends to deform originally rectangular objects into parallelograms. Shearing 
stress is also known as tangential stress. The most general definition is that shear acts 
to change the angles in an object. 
 

 
 
 

 
 
 

hb

P

A

P
  
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Where  P = applied tensile force 
 A = area of the shearing plane between the two bars 
 
The unit for shearing stress is same with the normal stress. The example of shearing stress 
are shown in Figure 1.5 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 

Figure 1.5:  Shear stress 
 

Example 1.4 
Two wooden members of uniform rectangular cross section are joined by the 
simple glued scarf splice shown. Knowing that P = 11 kN, determine the normal 
and shearing stresses in the glued splice.  
 

 
Figure E1.4 

 

P 

P’ 

45° 

75 mm 

A

F

A

P

2
ave  A

F

A

P
ave

150 mm 
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Solution: 
 
θ = 90 – 45 = 45° 
 
P = 11 kN = 11 000 N 
 
Ao = (150)(75) = 11.25 x 103 mm2           11.25 x 10-3 m2 
 
 
(i) Normal stress 
 

3

232

1025.11

45cos)1011(cos








oA

P
 

 

kPa489               answer 

 
(ii) Shear stress 
 

)1025.11(2

90sin)1011(

2

2sin
3

3









oA

P
 

 
 
P =  489  kPa              answer 

 
 

 
Example 1.5 
The joint is fastened using two bolts as shown in figure below. Determine the required 
diameter of the bolts if allowable shear stress for the bolts is τallow = 110 Mpa 

 
 
 
 
 
 

Figure E1.5 
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Solution 
 

The figure above is double shear connection, therefore  
A

P

2
  

 

However, the joint fastened using two bolts, so 
A

P

A

P

4)2(2
  

4

2d
A


   

 













4
4

1060
10110

2

3
6

d
  

 
d = 0.013 m 
 
 
Example 1.6 
A load P is applied to a steel rod supported as shown by an aluminium plate into which a 12 
mm diameter hole has been drilled. Knowing that the shearing stress must not exceed 80 
MPa in the stel rod and 70 Mpa in the aluminium plate, determine the largest load P that can 
be applied to the rod. 
 
Solution 
 
 For the steel rod 
 
A1 = πd1t1  = π (0.012)(0.010) 
 
     = 376.99 x 10-6 m2 

1

1
1

A

P
  

 
P1 = (180 x 106)( 376.99 x 10-6 ) = 67.86 x 103  N 
 
For the aluminium plate, 
 
A2 = πd2t2 = π (0.040)(0.008) 
 
     =  1.01 x 10-3 m2 
 

2

2
2

A

P
  
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P2 = (70 x 106)( 1.01 x 10-3)  
 
     = 70.372 x 103 N 
 
The limiting value for the load P is the smaller of P1 and P2. 
 
P = 67.89  kN 
 
 
1.1.3 Bearing Stress 
Bearing stress is a type of normal stress but it involves the interaction of two surfaces. The 
bearing stress is the pressure experience by the second surface due to the action from the first 
surface. Example: the pressure between bolt and plate at a joint. 
 
 
 
 
 
 
 
 
  

 
 

 
 

 
Figure 1.6:  Bearing stress 

 
Example 1.7 
In Figure E1.7, assume that a 20-mm-diameter rivet joins the plates that are each 
110 mm wide. The allowable stresses are 120 MPa for bearing in the plate 
material and 60 MPa for shearing of rivet. Determine (a) the minimum thickness 
of each plate; and (b) the largest average tensile stress in the plates. 
 
 

 
 
 
 
 
 

Figure E1.7 
 
 

tD

P

A

P
    
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Solution: 
 
Part (a):  
From shearing of rivet: 
 

rivetsAP   

 





6000

20
4

1
60 2













P

P
 

 
From bearing of plate material: 
 

 

mmt

t

AP bb

85.7

201206000











 

  

Part (b): Largest average tensile stress in the plate: 

  
MPa

AP

67.26

2011085.76000













 

 

 
1.2 Strain 
Strain is a measure of deformation of a body which undergoes elongation, 
contraction or twisted through a certain angle. Generally, strain can be classified 
into two types namely: 
 
(i) normal strain (ε)  
(ii) shear strain (γ)  
 
 
1.2.1 Normal strain 
Normal strain (ε) is the deformation of a body which involved elongation or 
contraction. When a bar of length L and cross-sectional area A is subjected to 
axial tensile force P through the cross-section's centroid, the bar elongates. The 
change in length divided by the initial length is the bar's engineering strain. The 
symbol for strain is ε (epsilon). The strain in an axially loaded bar is: 
 

 
 
  

 
L


   
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Strain is positive in tension and negative in compression.  Strain is a fractional 
change in length (it is dimensionless). Due to the strain is much smaller than 1, it 
is typically given as a percentage: e.g.,  = 0.003 = 0.3%. 

 
 
 

Figure 1.7:  Normal strain  
 

 
1.2.2 Shear strain 
Shear strain is a strain which involved a shear deformation i.e. body twist due to 
torsion and a distorted cuboid as shown in Figure 1.8. Strain changes the angles of 
an object and shear causes lines to rotate.  

 

 
 

Figure 1.8 Shear strain due to twisting moment (T) and shear stress (τ) 
 
  
 Shear strain                                                     but it is considered small in practice 
 
 

 
The relationship between the shear strain, shear stress and the modulus of 
rigidity is as follows: 

 
 
 
 
 
 
Where τ  = shear stress 
    γ  = shear strain in radians 
  G  = modulus of rigidity 
 

γ 

L 

τ 
a a' 

G


   

L

aa'
  

γ 

 

L 

 

a 

 

a' 

 

T 
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1.3 Normal stress and strain relationship 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.9: The stress-strain relationship  
 
The stress-strain relationship of a material usually can be obtained from tensile 
or compression test on a specimen of the material. Figure 1.9 shows the stress-
strain behavior which indicates how the material deforms on the application of 
load. The normal stress for the material is computed by dividing the load (P) by 
the original cross-sectional area (A). Stress-strain diagrams of various materials 
vary widely, and different tensile tests conducted on the same material may yield 
different result, depending upon the temperature of the specimen and the speed 
loading.  
 
Proportional Limit (Hooke's Law) 
From the origin O to the point called proportional limit, the stress-strain curve is a 
straight line. This linear relation between elongation and the axial force causing 
was first noticed by Sir Robert Hooke in 1678 and is called Hooke's Law that 
within the proportional limit, the stress is directly proportional to strain.  The 
constant of proportionality k is called the Modulus of Elasticity E or Young's 
Modulus and is equal to the slope of the stress-strain diagram from O to P.  
 
Elastic Limit 
The elastic limit is the limit beyond which the material will no longer go back to its 
original shape when the load is removed, or it is the maximum stress that may e 
developed such that there is no permanent or residual deformation when the load 
is entirely removed. However, in practice this point is very difficult to determine 
because very close to proportional limit point. 
 
 
 
 

©2001 Brooks/Cole, a division of Thomson Learning, Inc.  Thomson Learning
™

is a trademark used herein under license.©2001 Brooks/Cole, a division of Thomson Learning, Inc.  Thomson Learning
™

is a trademark used herein under license.

σ-ε curve using 

original area 

σ-ε curve using 

nominal area 
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Yield Point 
Yield point is the point at which the material will have an appreciable elongation 
or yielding without any increase in load. The material is said to undergo plastic 
deformation.  
 
Strain hardening 
Point C to D is called as strain hardening region whereas the curve rises 
gradually until it flatten at D. The stress which correspond to point D is called 
ultimate strength/stress 
 
Ultimate Strength/Stress 
The maximum ordinate in the stress-strain diagram is the ultimate strength or 
tensile strength. 
 
Rapture Strength (Fracture) 
Rapture strength is the strength of the material at rupture. This is also known as 
the breaking strength (final point).  
 
 
1.3.1 Offset Method 
Beside steel, other materials such as aluminium, glass, brass and zinc, constant 
yielding will not occur beyond the elastic range. This metal often does not have a 
well defined yield point. Therefore, the standard practice to define yield strength 
for this metal is graphical procedure called the offset method. Normally a 0.2% 
(0.002 mm/mm) is chosen, and from this point on the strain (ε) axis, a line 
parallel to the initial straight-line portion of the stress-strain diagram is drawn 
(Figure 1.10). The point where this line intersects the curves defines the yield 
strength.  
 

 

 

  0.002 

σ (MPa) 

ε (mm/mm) 

   σy 

Figure 1.10: Determination of yield strength using offset method 
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Example 1.8 

A rod with the diameter 5 mm and length 100 mm is stressed slowly with the load 
up to failure. The result for this test is shown in Table E1.8. Draw the stress-
strain curve and determine 

(a) modulus of elasticity 

(b) yield stress 

(c) stress maximum    

 

     Table E1.8  

Force 
P (N) 

Elongation 
δ (mm) 

1100 0.0625 

2200 0.0125 

3300 0.1875 

3740 0.2375 

4180 0.2875 

4620 0.4275 

4840 0.5300 

5060 0.7625 

5280 0.8900 

5060 1.0250 

4840 1.1525 
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Solution 

Force Elongation Strain Stress 

P (N) δ (mm) ε 
σ 

(N/mm²) 

1100 0.0625 0.00063 56.04 

2200 0.0125 0.00013 112.07 

3300 0.1875 0.00188 168.11 

3740 0.2375 0.00238 190.52 

4180 0.2875 0.00288 212.94 

4620 0.4275 0.00428 235.35 

4840 0.5300 0.00530 246.56 

5060 0.7625 0.00763 257.77 

5280 0.8900 0.00890 268.98 

5060 1.0250 0.01025 257.77 

4840 1.1525 0.01153 246.56 

 

 

 

 

 

 

 

 

 

 

Figure E1.8 

From the graph; 

(a) E = 112.07/0.00125 = 89 600 N/mm2 

(b) σy = 230 N/mm2 

(c) σmax = 270 N/mm2 
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1.4 Hooke’s Law  

Stiffness; Modulus Young         
Stiffness is a material's ability to resist deformation. The stiffness of a material is 
defined through Hooke's Law: 

 
 
 
where E is Young's Modulus (the modulus of elasticity), a material property. 
Values of E for different materials are obtained experimentally from stress-strain 
curves. Young's Modulus is the slope of the linear-elastic region of the stress-
strain curve. 

 
 

Figure 1.11: Stress-strain relationship at the linear-elastic region 

 
E is generally large and given in either ksi (kilopounds per sq.inch) or Msi 
(megapounds per sq. inch = thousands of ksi), or in GPa (gigapascal). 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 

    Figure 1.12: Deformation due to axial load 

 

 E  

Strain (ε) 




E  

S
tr

es
s 

(σ
) 

http://strengthandstiffness.com/3_stress/page_3a.htm#3#3
http://strengthandstiffness.com/3_stress/page_3a.htm#3#3


STRESS AND STRAIN 

 18 

Consider a homogenous rod BC of length L and uniform cross section of area A 
subjected to a centric axial load P (Figure 1.12). If the resulting axial stress σ = 
P/A does not exceed the proportional limit of the material, the Hooke’s law can 
be apply and write as follow:  
 
 
 
From which it follows that 
 
 
The strain; 

 

                                                         
L


   

 

So,                                               L   

  
                                           

Therefore;    
 
 
 
 

 
Example 1.9 
A steel rod having a cross-sectional area of 300 mm2 and a length of 150 m is 
suspended vertically from one end. It supports a tensile load of 20 kN at the 
lower end. If the unit mass of steel is 7850 kg/m3 and E = 200 × 103 MN/m2, find 
the total elongation of the rod. 
  
Solution 
 
Elongation due to its own weight: 

AE

PL
1  

  

Where: 

P = W = 7850x 300 (1/10002) x 150 x 9.81  
P = 3465.3825 N 
L = 75(1000) = 75 000 mm 
A = 300 mm2 
E = 200 000 MPa 
  
 

 E  

AE

P

E



  

AE

PL
  

 

 



STRESS AND STRAIN 

 19 

Thus, 

mm33.4

)200000(300

)75000(3825.3465

1

1








 

 Elongation due to applied load: 

AE

PL
2  

Where:  
P = 20 kN = 20 000 N 
L = 150 m = 150 000 mm 
A = 300 mm2 
E = 200 000 MPa 
  

Thus, 

mm50

)200000(300

)150000(20000

2

2








 

Total elongation: 
 

mm33.54

5033.4

21













 

 
 
 
Example1.10 
Determine the deformation of the steeel rod shown in Figure E1.10 under the 
given loads (E=200 GPa) 
 
 
 
 
 
 
 
 

Figure E1.10 
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1.5 Poisson ratio 
Poisson's ratio is the ratio of lateral contraction strain to longitudinal extension 
strain in the direction of stretching force. Tensile deformation is considered 
positive and compressive deformation is considered negative. The definition of 
Poisson's ratio contains a minus sign so that normal materials have a positive 
ratio. Poisson's ratio, also called Poisson ratio or the Poisson coefficient. 
Poisson's ratio is a materials property. 
 
 
 
 
 
 
 
 

Figure 1.9: Lateral and longitudinal strain is same in all direction 
 
 
 

 
 
 

allongitudin

lateral




 

 

 

 

 

 

 

L1 = L2 = 300 mm 
A1 = A2 = 581 mm2 = 581 x 10-6 m2 
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Example 1.11 
A solid cylinder of diameter d carries an axial load P. Show that its change in 
diameter is 4Pν / πEd 

 
 
 
Solution 

Ed

P

Ed

Pd

AE

P

d

E

y

y

y

x

y

xy

x

y























4

4

1 2














 

 

 

1.6  Working stress, permissible stress and temperature stress 
 

1.6.1 Temperature Stress 
An object will expand when heated and contract when the temperature drops. 
This phenomenon is very important because if these movements are prevented, 
then internal stress and strain will be developed within the body of the structural 
member and the effect can be very disastrous. Since this is the effect of 
temperature on the member then the corresponding stress and strain are called 
temperature stress and temperature strain. For this reason, most civil 
engineering structure is provided with expansion joint to allow for free expansion 
and contraction of the member.   
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The variation of the length due to temperature change depends upon its 
coefficient of linear expansion or contraction α where α is the change in length for 
a unit change of temperature per unit original length. 

 
1.6.2  Superposition Method 
This method is applied for indeterminate problem where the reactions at the 
support are more than what is required to maintain its equilibrium. In this method, 
one of the support is released and let it elongate freely as it undergoes the 
temperature change ΔT.  

 
Step 1 Consider a rod AB is placed between two fixed supports. Assuming 

there is no temperature stress or strain in this initial condition. 
 
 
  
 
 

Step 2 Released the support B and let it elongate freely as it undergoes 
the temperature change ΔT. The corresponding elongation (δT) is: 

 

 LTT   

 
 

Step 3 Applying to end B the force (P) representing the redundant reaction 
and we obtain a second deformation (δP):  

 

AE

PL
P   
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 The total deformation must be zero: 

  0
AE

PL
LTPT   

From which, we conclude that 
 

 TAEP    

 
An the stress in the rod due to the temperature change is  

 

 TE
A

P
   

 
  

Example 1.12 
A steel rod is stretched between two rigid walls and carries a tensile load of 5000 
N at 20°C. If the allowable stress is not to exceed 130 MPa at -20°C, what is the 
minimum diameter of the rod? Assume α = 11.7 µm/(m·°C) and E = 200 GPa. 
  

 
 

Solution                                       
     Therefore: 
 

 

 
A

P
TE

AE

PL
TL

E

L

stT














      

 
 
 
 
 
 
 
        
 
 

  

mmd

d

mmA

A

22.13

36.137
4

1

36.137
4.36

5000

5000
40200000)107.11(130

2

2

6







 


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Example 1.13 
Steel railroad reels 10 m long are laid with a clearance of 3 mm at a temperature 
of 15°C. At what temperature will the rails just touch? What stress would be 
induced in the rails at that temperature if there were no initial clearance? Assume 
α = 11.7 µm/(m·°C) and E = 200 Gpa. 

 

 
 

Solution 
 

Temperature at which δT = 3 mm: 
 

 

CT

T

TTL

TL

f

f

ifT

T











64.40

)15)(10000)(107.11(3

)(

6





 

 
 
Required stress: 
 

 

 

MPa

TTE

TL
E

L

if

T

60

)1564.40)(200000)(107.11( 6























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Example 1.14 
The rigid bar ABC in Figure E1.14  is pinned at B and attached to the two vertical 
rods. Initially, the bar is horizontal and the vertical rods are stress-free. 
Determine the stress in the aluminum rod if the temperature of the steel rod is 
decreased by 40°C. Neglect the weight of bar ABC. 

 

 
 

Figure E1.14 
 

Solution 
 

Contraction of steel rod, assuming complete freedom: 
 

mm

TL

stT

stT

stT

4212.0

)40)(900)(107.11(

)(

6

)(

)(















 

The steel rod cannot freely contract because of the resistance of aluminum rod. 
The movement of A (referred to as δA), therefore, is less than 0.4212 mm. In 
terms of aluminum, this movement is (by ratio and proportion): 
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






































)70000(1200

)1200(
5.0

)200000(300

)900(
4212.0

5.04212.0

5.0

5.0

2.16.0

)(

)(

)(

alst

alst

alststT

AststT

stAstT

alA

alA

PP

AE

PL

AE

PL











 

alst PP 4762.028080       === Equation 1 

 

alst

B

PP

M

2.16.0

0





 

Pst = 2Pal      === Equation 2 

  

Equations (2) in (1) 

28080 – 2Pal = 0.4762Pal 
 

Pal = 11340 N 

1200

11340


al

al

al
A

P
  

MPaal 45.9                  answer 
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1.7 Plane Stress and Mohr Circle 
 
1.7.1 Sign Convention 
 

Normal stress  
 

 
    
 
 
Refer to Figure 1.14, a tensile stress is considered to be positive normal stress, 
meanwhile, compressive stress is a negative stress 
 

 
In application to plane stress equations (Figure 1.15), the sign convention will 
determined the sign of the shear stress that to be used in the plane stress 
equations. The shear stress is considered positive if: 
 

(i) It acts on the positive x-surface in the positive y-direction 
(ii) It acts on the positive y-surface in the positive x-direction 

     (a) Shear stress (+ve)    (b) Shear stress (-ve) 

 

Negative x 
direction 

   Figure 1.15: Shear stress sign convention in application to plane stress equations 

 

 

 

Positive x 
direction 

Positive y 
direction 

  

Negative y 
direction 

σ σ σ σ 

(a) Compression stress (b) Tensile stress 

Figure 1.14: Sign convention for axial stress 
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In application to Mohr’s Circle (Figure 1.16), the sign convention will determine 
the coordinate of the point on the Mohr’s Circle. The shear stress is considered 
positive (+ve) if it cause the element to rotate in clockwise direction. Meanwhile, 
the negative stress will be considered if the shear stress causes the element to 
rotate in counterclockwise.  

 
 

1.7.2 Stress Analysis Using Equation and Mohr Diagram Method 
 

1.7.2.1 Equation Method 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     (a) Shear stress (+ve)    (b) Shear stress (-ve) 

 
Figure 1.16: Shear stress sign convention in application to Mohr’s Circle 

 

y 

σx(ΔAcosθ) 

σ'xΔA 

y' x' 

x 

τ'xyΔA 

τxy(ΔAcosθ) 

τxy(ΔAsinθ) 

σy(ΔAsinθ) 

θ 

y 

ΔAcosθ 

y' x' 

x 

ΔAsinθ 

ΔA 

z 

θ 

A1 = ΔAsinθ 

A2 = ΔAcosθ 
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



sin

sin

1

1

AA

A

A






   and   





cos

cos

2

2

AA

A

A






 

 

A

P
            therefore,    AP   

 
 

For x-axis             2AP xx    therefore  cosAP xx   

 

    2AP xyx    therefore  cosAP xyx   

 
 

 

For y-axis             1AP yy    therefore  sinAP yy   

 

    1AP xyy    therefore  sinAP xyy   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

σy(ΔAsinθ) 

x’ 
y’ 

τxy(ΔAcosθ) 

τxy(ΔAsinθ) 

σx(ΔAcosθ) 

θ 
x 

y 

σ'xΔA 

τ'xyΔA 

θ 

θ 
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Using components in x’ and y’ axes, the equilibrium equations are: 
 
∑F’x = 0  and  ∑F’y = 0 
 
The equilibrium in x’ axis (∑F’x = 0) 
 
σ'xΔA – σxΔAcosθcosθ – τxyΔAcosθsinθ – σyΔAsinθsinθ – τxyΔAsinθcosθ = 0 
 
σ'x = σxcos2θ + σysin2θ + 2τxysinθcosθ = 0     Equation 1.1 

 
The equilibrium in y’ axis (∑F’y = 0) 

 
τ'xyΔA + σxΔAcosθsinθ  – τxyΔAcosθcosθ – σyΔAsinθxcosθ + τxyΔAsinθxsinθ = 0 
 
τ'xy  = (σx – σy)cosθsinθ + τxy(cos2θ – sin2θ)     Equation 1.2 
 
 
Using the trigonometric relationship 
 

 cossin22 Sin         Equation 1.3 

 

2

2cos12 



Sin                        Equation 1.4 

 

 2sin212 Cos         Equation 1.5 
 

2

2cos12 



Cos                      Equation 1.6 

 

1cos22 2  Cos         Equation 1.7 
 

 
Substitute Equations 1.3, 1.4 and 1.6 into Equation 1.1, becomes 
 







 2sin
2

2cos1

2

2cos1
' xyyxx 







 








 
   

 
 




 2sin2cos
22

' xy

yxyx

x 






 








 
     Equation 1.8 
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Substitute Equations 1.3, 1.4 and 1.6 into Equation 1.2, becomes 
 




 2cos2sin
2

' xy

yx

xy 








 
       Equation 1.9 

 
The expression for the normal stress σ’y is obtained by replacing θ in Equation 
1.8 by the angle θ+90° that the y’ axis form with x axis. Since cos (2θ+180°) = -
cos2θ and sin(2θ+180°) = -sin2θ, so 
 




 2sin2cos
22

' xy

yxyx

y 






 








 
               Equation 1.10 

 
The principal stress or σmax and σmin can be calculated by differentiate the 
Equation 1.8: 
 

 




 2sin2cos
22

' xy

yxyx

x 






 








 
  

 
 







2cos22sin2

2

'

xy

yxx

d

d








 
  

 

0' 




d

d x  

 
Therefore;  
 

02cos22sin2
2








 
 


xy

yx
  

 




2cos22sin2
2

xy

yx








 
 

 

 
2

cos

2sin

yx

xy










                         

2

2tan
yx

xy







  

   
θ = θP1 and θP2 where θP1 and θP2 are 180° apart 
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Thus , tan 2θP1 = tan 2θP2  = 
yx

xy







2
              Equation 1.11 

 

 
 

Figure 1.17:  Location of 2θP1 and 2θP2 

 

The length of OA and OB in Figure 1.17 is  xy
yx 2

2

2













 
  

 
Thus from the trigonometry of the triangles, we have 
 

xy
yx

yx

P

2

2
1

2

2
2cos















 










 

            Equation 1.12 (a) 

 

xy
yx

xy

P

2

2
1

2

2sin














 

      Equation 1.12(b) 

 

(σx-σy)/2 

-(σx-σy)/2 

τxy 

-τxy 
R

y 

O 

B 

A 

2θP2 R

y 

2θP1 
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xy
yx

yx

P

2

2
2

2

2
2cos















 










 


       Equation 1.12(c) 

 
 

xy
yx

xy

P

2

2
2

2

2sin














 


       Equation 1.12(d) 

 
Substituting Equation 1.12(a) to 1.12(d) into Equation 1.8, thus 
 

xy
yxyx 2

2

minmax,
22

, 


 








 








 
    Equation 1.13 

 
 
 
 
 
 
 
  

 
 
 
 
 
 
          
 

 
 
The maximum and minimum shear stresses can be determined by differentiating 
Equation 1.9. 
 
 




 2cos2sin
2

'' xy

yx

yx 








 
   

      

0
''






d

d yx
      

x 

y 

y' x' 

θP1 

σmax τ=0 

σy 

σx 

σmin 

θP1 

θP2 = θP1 + 90° 

x 

σmin 

σmax 

σmax 

y 

In-plane principal stresses 
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





2sin22cos2

2

''

xy

yxyx

d

d










 
  

 
 







2sin22cos2

2

''

xy

yxyx

d

d










 
  




 2cos2
2

2sin2 








 


yx

xy  

 

xy

yx





 2

)(

2tan



         

2θ = 2θS1    and    2θS2  =  2θS1 + 180° 
 
 

Where 
xy

yx

S





2

)(
2tan 1


      and      

xy

yx

S





2

)(
2tan 2




              Equation 1.14 

 
 

 
Figure 1.18: Location of 2θS1 and 2θS2 

 
 
 

 The length of OA and OB  xy
yx 2

2

2













 
  

 
 

 
2

yx  
 

  
2

yx  
 

2θS1 

2θS2 

-τxy 

τxy 

σ 

τ 
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xy
yx

yx

S

2

2
1

2

2
2sin















 










 


                       Equation 1.15 

 
 

xy
yx

xy

S

2

2
1

2

2cos














 

              Equation 1.16 

 
Substituting Equation 1.15 and 1.16 into Equation 1.9 
 




 2cos2sin
2

' xy

yx

xy 








 
              Equation 1.9 

 

 






























 
































 










 





xy
yx

xy

xy

xy
yx

yx

yx

2

2

2

2
max

22

2

2













  

 

xy
yx

xy
yx

2

2

2

2

max

2

2
















 










 

  

 

xy
yx

xy
yx

xy
yx

2

2

2

2

2

2

max

2

22



















 










 










 

  

 

xy
yx 2

2

max
2




 








 
                                                                  Equation 1.17 

 
Subtituting the equation 1.15 and 1.16 into equation 1.8, we see that there is also 
a normal stress on the planes of maximum in-plane shear stress (σave) 
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


 2sin2cos
22

' xy

yxyx

x 






 








 
  

 

2

yx

ave





            Equation 1.18  

 
      
Example 1.15 
For the given state of stress, determine the normal stress and shearing stress 
exerted on the oblique face of the shaded triangular element shown. 

 

 
 
 
   +    ∑F = 0 
 

MPa

AAAA

9.3230cos6030cos30sin180

030cos30cos6030sin30cos9030cos30sin90

2 






 

 
 
   +    ∑F = 0 
 

MPa

AAAA

0.7130sin30cos60)30sin30(cos90

030sin30cos6030cos30cos9030sin30sin90

22 






 

60° 

90 MPa 

60 MPa 

Acos30 

Asin30 
A 

30° 
τ 

σ 

90 MPa 

30° 30° 

90Acos30 

σA 

τA 

60 MPa 
60Acos30 

90Asin30 
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Example 1.16 
For the state of plane stress shown, determine (a) the principal stress (b) 
principal planes (c) maximum shear stress  
 
 
 
 
 
 
 
 
 
 
 
(a) Principal stress 
 
σx = 50 MPa         σy = -10 MPa          τxy = 40 MPa 
 
 

xy
yxyx 2

2

minmax,
22

, 


 








 








 
  

 
   

2

2

minmax, )40(
2

1050

2

1050
, 







 








 
   

 
 

22

minmax, )40()30(20,   

 
 

MPa705020max   

 

MPa305020min   

 
 
 
 
 
 
 
 
 
 

50 MPa 

10 MPa 

40 MPa 
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(b) Principal planes 
 

tan 2θP  = 
yx

xy







2
 

 

60

80

)10(50

)40(2
2tan 


  

 
2θp = 53.1°  and 180° + 53.1° = 233.1° 
 
θp = 26.6°    and  116.6 
 
 
 
(c) Maximum shearing stress 
 
 

MPaxy
yx

50)40()30(
2

222

2

max 








 
 


    

 
θs = θp - 45° 
 
    = -18.4° 
 
or 
 

)40(2

))10(50(

2

)(
2tan







xy

yx

S



  

 
 θs = -18.4° 
 
 
 

MPa
yx

ave 20
2

1050

2









  

 

θp = 26.6
° 

σmax = 70 MPa 

σmin = 30 MPa 
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Example 1.17 
For the give state of stress, determine the normal and shearing stresses after the 
element shown has been rotated through 25° clockwise.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Solution  
 
σx = 50 MPa         σy = -10 MPa          τxy = 40 MPa         θ = -25° 
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σave = 20 MPa 

τmax = 50 MPa 
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θ = 18.4° 
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2θ = -50° 
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1.7.2.2 Mohr’s Circle Method 
 
Mohr’s circle can be used to determine the principal stresses, the maximum in-
plane shear stress and average normal stress or the stress on any arbitrary 
plane.  
 
Equation 1.8 and 1.9 can be defined in the form of circle as follow: 
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By adding and squaring each equation, the θ value can be eliminated, therefore; 
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σx, σy and τxy are constants 
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Equation 1.19 is an equation of a circle with: 
 
 σx’ and τx’y’   =  coordinate on the Mohr circle, 
  R   =  a radius of the Mohr circle 
 σave and τ= 0 =  the centre of the circle.  
 
 
A Mohr circle can be drawing in two manners, which are: 
 

(a) Consider σ positive to the right and τ positive downward (orientation θ 
counter clockwise positive). Refer Figure 1.19(a) 

 
(b) Consider σ positive to the right and τ positive upward (orientation θ 

clockwise positive). Refer Figure 1.19(b) 
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Figure 1.19: The rotation of Mohr’s circle 

 
Method (a) will be used in this chapter for solving the problems. The steps to 
draw the Mohr circle are:  
 
(a) Determine the centre of the circle (point C) with coordinate σ = σave and τ =0 
(b) Determine the point X at θ = 0 with coordinate X(σx, τxy)   
(c) Determine the point Y at θ = 90° with coordinate Y(σy, -τxy) 
(d) Draw a circle which through point X and Y with centre point at C   
(e) Draw line XY as a reference point 

 
 
 

Figure 1.20: Mohr’s circle 
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Example 1. 18 
Using Mohr’s circle method, determine (a) normal and shearing stresses after 
rotated 40° (b) principal stress (c) maximum shear stress  
 
 
 
 
 
 
 
 
 
 
 
 
 
(a) dra 
Point X (15, 4),    Point Y (5, -4) 
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From the Mohr’s circle 
 
(a) normal and shearing stresses after rotated 40°  
 

   σx’ = 14.81 MPa,  τx’y’ = -4.23 MPa 
 

      σy’ = 5.19 MPa,  τy’x’ = 4.23 MPa 
 
 
(b) Principal stress  
 

σmax = 16.40 MPa,   σmin = 3.6 MPa,   
 
θ = 19.5° 

 
 
(c) maximum shear stress 
 

τmax = 6.40 MPa,   σave  = 10 MPa,   
 
θ = -25.7° 
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Tutorial 1 
 
 
A Mohr’s Circle has the radius R = 52 MPa and average stress σave = 80 MPa, 
respectively. Determine: 
 

(a) Principal stress  
(b) Normal and shear stress at θ = 0º if the principal plane is 34º.  
(c) The stress component exerted on the element obtained by rotating the 

given element at θ = - 30º. 
            (d)  Maximum shear stress  

 
 

 
 
 
 
 


